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Abstract

We analyze optimal fiscal policy in a heterogeneous-agent model with capital
accumulation and aggregate shocks, where the government uses public debt, a capital
tax, and a progressive labor tax to finance public spending. We first study a tractable
model and show that the steady-state optimal capital tax can be positive if credit
constraints are occasionally binding. However, the existence of such an equilibrium
depends on the shape of the utility function. We also characterize the optimal
dynamic of public debt after a public spending shock. We confirm these findings by
solving for optimal policy in a general heterogeneous-agent model.
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1 Introduction

What are the optimal levels of public debt and capital taxes? After a positive public
spending shock, should the government temporarily increase capital taxes, or the progres-
sivity of the tax system? These long-standing questions are likely to remain relevant in
many countries in the coming years, as policymakers increasingly discuss additional public
spending to combat climate change or for military purposes. Such questions require con-
sidering both the distortionary and redistributive effects of tax changes, while also taking
into account general equilibrium effects. Heterogeneous-agent models in the tradition of
the Bewley–Huggett–Imrohoroğlu–Aiyagari literature (Bewley, 1983; Imrohoroğlu, 1989;
Huggett, 1993; Aiyagari, 1994; Krusell and Smith, 1998) are relevant tools for analyzing
these questions, because they generate a realistic amount of heterogeneity along with
general and dynamic equilibrium effects. However, after seminal papers investigating
optimal fiscal policy in these environments (Aiyagari, 1995; Aiyagari and McGrattan,
1998), the literature has mainly moved towards a positive analysis. Little is known about
the optimal levels and dynamics of public debt and capital taxes, because of both the
theoretical and the computational difficulties of solving for optimal fiscal policy.

This paper analyzes optimal fiscal policy in heterogeneous-agent models, considering
capital accumulation, progressive labor income taxation, capital taxation, public debt, and
aggregate shocks. The only frictions considered are incomplete markets for idiosyncratic
risk, occasionally binding credit constraints (which appear to be the key friction), and the
given set of fiscal instruments. In particular, the planner in this model cannot use lump-
sum taxes, which are known to potentially restore Ricardian equivalence in some settings
(Bhandari et al., 2017). Ultimately, we find and characterize equilibria that feature optimal
positive levels of both capital taxation and public debt. While our analysis admittedly
abstracts from other frictions, such as nominal rigidities or frictional labor markets, we
identify new mechanisms that will also be present in more general environments with these
features.1 Our paper makes three specific contributions, which we now discuss in more
detail.

To understand the optimal steady-state levels of capital taxation and public debt,
we first consider a simple heterogeneous-agent model and a utilitarian planner with

1Considering only price or wage stickiness would yield the same allocation as in our economy, since the
only role of optimal monetary policy is price stability, given the set of fiscal instruments we consider (see
LeGrand et al., 2022). Moreover, considering capital accumulation allows one to characterize the optimal
dynamics of the capital tax and to discuss its relationship with the results of the vast Chamley–Judd
literature on optimal capital taxation.
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full commitment. In this simple model, two types of agents face deterministic income
fluctuations between employment and unemployment, as in Woodford (1990). The only
financial frictions are credit constraints, which can occasionally be binding, although there
is no uninsurable idiosyncratic risk. Our first contribution is to prove that, contrary to
the results of Judd (1985) and Chamley (1986), the steady-state optimal capital tax can
be positive. However, it depends crucially on the shape of the utility function and on the
intertemporal elasticity of substitution (hereafter IES). The intuition for this result is that
savings induce a price externality, which the planner internalizes via a positive capital
tax. The planner adjusts public debt so that the marginal return of capital equals the
discount rate at the steady state. This is the well-known modified golden rule of Aiyagari
(1995). With respect to savings, an extra unit saved increases the capital tax base and thus
relaxes constraints on public finances in proportion to the capital tax. Absent any costs,
the planner would like to set this marginal benefit to zero and maximize benefits – and
hence to set a zero capital tax. Because the planner chooses savings that are consistent
with the agents’ Euler equations, the envelope theorem implies that there is no direct
welfare effect for agents, and the costs on agents occur solely through a price externality
of savings on interest rates and wages. When credit constraints are binding, in order to
induce agents to save more, the planner would have to increase post-tax factor prices, and
thus decrease the tax rate, what reduces the tax return. When setting aggregate savings,
the planner trades-off the benefits in terms of larger fiscal base with the costs in terms of
higher post-tax factor prices.

When the utility function is separable, the price externality is related to the elasticity
of interest and wage rates to savings, which are pinned down by the Euler equation and the
labor supply first-order condition. The savings externality is then found to be proportional
to the gap between the inverse of the IES of employed and unemployed agents. This makes
the shape of the utility function key to setting the optimal capital tax. In particular, the
optimal capital tax is always zero in the standard case of a separable, Constant Relative
Risk Aversion (CRRA) utility function, for which the gap between IESs is zero. This is
consistent with the results of Chamley-Judd. In that case, the net effect of aggregate
savings on post-tax prices is null and there is no savings externality. The planner can
simply choose savings that maximize its resources, and hence maintain a capital tax of zero.
This result is also consistent with the claim of Chien and Wen (2023) and the numerical
investigation of Auclert et al. (2022).

However, the steady-state capital tax can be positive if the utility function deviates from
a constant IES. This is the case, for example, with separable DRRA (e.g., Stone-Geary or
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Fishburn) utility functions. For non-separable utility functions, the elasticity of the factor
prices with respect to savings includes an additional term related to the cross-derivative of
the utility function with respect to consumption and labor supply. This new term explains
why the optimal capital tax is positive for the Greenwood-Hurcowitz-Huffman (GHH) or
the King-Plosser-Rebelo (KPR) utility functions.

Our second contribution is to fully characterize the conditions for the existence of an
equilibrium in this environment with both positive optimal capital taxation and positive
optimal public debt. To study existence, we consider a GHH-type utility function, such as
in Aiyagari (1995), Diamond (1998) or Açikgöz et al. (2022). The existence of the steady-
state equilibrium relies on three independent conditions: a non-first-best condition, a
so-called Straub–Werning condition, and a standard Laffer condition. The Straub–Werning
condition is based on Straub and Werning (2020) and states that public spending must
be low enough to ensure a stationary steady state, and to avoid a situation in which the
planner chooses to continuously reduce the capital stock (despite being able to raise enough
resources in the steady state). Finally, a fourth, Blanchard–Kahn condition, ensures the
stability of the equilibrium. Alongside a positive capital tax, the optimal fiscal system can
be characterized (for some parameter combinations) as featuring a positive public debt,
when saving is higher than the optimal capital stock.We extend this simple setting to an
economy with ex-ante heterogeneity and show that the optimal capital tax depends on the
social weights of the Ramsey planner. This result again differs from that of Judd (1985).

Equipped with these results, we analyze the optimal dynamics of fiscal policy after a
one-time positive shock to public spending (a so-called MIT shock). Our third contribution
is to show that, for a given net present value (NPV) of public spending, public debt increases
(resp. decreases) when the persistence of the shock is low (resp. high). Consequently,
the persistence of the shock is a key driver of the optimal dynamics of public debt. The
intuition for these results is the following. In contrast to the complete-market case where
agents initially hold some capital, in the incomplete-market model, the capital tax is not
used to fully front-load the adjustment because taxing capital reduces the ability of agents
to self-insure when markets are incomplete. In addition, in this type of model, public debt
converges to its optimal steady-state value for any transitory shock to public spending.
Consequently, if the shock’s persistence is high, a transitory increase in public debt would
require a welfare-reducing, highly persistent increase in taxes to finance public spending
and reduce public debt. Therefore, the optimal policy is to front-load the adjustment
and to temporarily reduce the public debt. When persistence is low, in contrast, the
increase in public debt improves consumption smoothing, and a small increase in taxes
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is sufficient to ensure that public debt converges. The claim that optimal public debt
can fall after a persistent public spending shock is already made in Feldstein (1985),
who introduced a quadratic tax adjustment cost. Compared to this seminal literature,
the current paper provides a micro-foundation for the cost of tax changes, based on
distributional considerations, and generates an optimal long-run level of public debt.

Finally, we verify that the previous results, obtained in a stylized model, still hold in a
realistic quantitative model. In this model, ex-ante different types of agents, all endowed
with a GHH utility function, face heterogeneous uninsurable income risk. The planner aims
to finance public spending through a capital tax, a nonlinear labor tax à la Heathcote et al.
(2017), and public debt. The planner’s Social Welfare Function (SWF) assigns weights to
agents that depend on their ex-ante type. Our quantitative strategy is, first, to use an
inverse-optimal approach to identify the SWF weights from the observed fiscal system,
which is assumed to be an optimal steady state (as in Heathcote and Tsujiyama, 2021
among others). Second, we verify that the existence conditions identified in the analytical
model also hold in the general model. Third, using the identified SWF, we compute
the optimal dynamics of the capital tax, the labor tax, progressivity, and public debt
after an (MIT) public spending shock. This strategy allows us to simulate the dynamics
around a quantitatively relevant steady state. The results of the quantitative model are
consistent with those of the theoretical model. Public debt increases when the persistence
of the public spending shock is low, and decreases otherwise. The quantitative model also
provides additional results. The optimal progressivity of the labor and the capital tax
both increase after a positive public spending shock, but the increase is smaller when the
persistence of the shock is higher. Optimal public debt also exhibits persistent deviations
that are quantitatively much larger than that of other variables.

This paper is related to the literature on optimal fiscal policy in heterogeneous-agent
models.2 As mentioned above, the existence of well-defined steady-state Ramsey equilibria
is still an open question. Conesa et al. (2009) considered transitions with constant
instruments. Chien and Wen (2023) and Auclert et al. (2022) find that the Ramsey
steady-state equilibrium does not exist for separable CRRA utility functions. Dyrda and
Pedroni (2022) quantitatively solved for optimal policy by considering the full path of
the policy instruments and using a KPR utility function. Aiyagari (1995) and Açikgöz
et al. (2022) analyze optimal public debt when there is no wealth effect on labor supply.
Bassetto and Cui (2021) study an environment where public debt can relax the producer’s

2A large literature provides a positive analysis of fiscal policy in heterogeneous-agent models (e.g.,
Floden, 2001; Heathcote, 2005; Rohrs and Winter, 2017; Ferriere and Navarro, 2023, among many others).
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credit constraint. They find that optimal steady-state capital taxes are positive, when
public debt is constrained to be at the top of the Laffer curve. Our results show that
these apparently contradictory results are consistent, as they are based different utility
functions.3

Analyzing optimal fiscal policy in such an environment obviously relies heavily on
results about idiosyncratic risk in complete-market economies.4 As mentioned above,
incomplete-market models allow for consideration of optimal positive steady-state capital
taxation and redistribution. A recent literature reports the development of tools for solving
for optimal policies with heterogeneous agents involving mostly monetary policy, for which
the steady-state allocation is simpler to characterize, as optimal inflation is null (e.g.,
Bhandari et al., 2021; Acharya et al., 2023; LeGrand et al., 2022; Nuño and Thomas, 2022,
among others). We use the truncation approach of LeGrand and Ragot (2022a), using
the refinement of LeGrand and Ragot (2022b) to solve the curse of dimensionality. This
method builds on the factorization method introduced by Marcet and Marimon (2019)
and allows one to easily simulate models with many instruments and aggregate shocks.
Because it is relatively new, we summarize the method in Section 4 below.

The rest of this paper is organized as follows. In Section 2, we present the general
environment. In Section 3, we present simplifying assumptions and solve the tractable
model. We present the general model and derive optimality conditions in Section 4. In
Section 5 we calibrate and simulate the general model. We conclude in Section 6.

2 The Environment

Time is discrete and indexed by t = 0, 1, . . ., and the economy is populated by a continuum
of F heterogeneous types of agents. The type of an agent determines the dynamics of
the productivity risk it faces. Each type f is distributed along a set If with measure
`f . We follow Green (1994) and assume that the law of large numbers holds. There is a
share mf of type f , where ∑F

f=1m
f = 1 and the population of each type is one, such that∑F

f=1m
f
´
i
`f (di) = 1.

Furthermore, the economy features production and a benevolent government that raises
3Albanesi and Armenter (2012) provide general sufficient conditions for the optimal steady-state capital

tax to be zero in many environments. These conditions are not fulfilled in our setup for relevant cases,
because the planner would need to use a distorting labor tax to finance public spending when the capital
tax is zero, preventing the economy from converging to the first-best allocation.

4For relevant contributions, see Barro (1979); Chari et al. (1994); Farhi (2010); Bassetto (2014); Chari
et al. (2020); Straub and Werning (2020); Collard et al. (2023) among others.
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distorting taxes and public debt to finance an exogenous stream of public spending.

Risks. The aggregate shock solely affects public spending, denoted by (Gt)t≥0, and is
therefore assimilated to a public spending shock. We discuss below, in Section 5.4, the
outcome of the model for other shocks. Furthermore, we assume that the whole path
of public spending (Gt)t≥0 becomes known to all agents in period 0. We will solve for
the optimal adjustment of the economy after such a shock (often called an MIT shock),
assuming that the planner cannot renege on their past commitments (See Section 4.4
below for further discussion).

Each agent’s type f differs according to its productivity process. Each productivity
process is a first-order Markov chain characterized by a finite set of productivity levels
Yf and a transition matrix Πf . For the sake of simplicity, we assume that the number
of possible productivity levels is the same for all types, and denoted by J – such that all
transition matrices have the same dimension J × J . We assume that each productivity
process admits a unique stationary distribution that is denoted by the vector Sfy , verifying
Sfy = (Sfy )>Πf .5 In period t, the productivity of agent i of type f is yfi,t and they will earn
a before-tax labor wage w̃tyfi,tl

f
i,t, where l

f
i,t denotes their labor supply and w̃t the before-tax

hourly wage. Their whole history of shocks up to t is denoted by yf,ti := {yfi,0, ..., y
f
i,t}.

Production. The production sector is standard. The consumption-investment goods of
the economy are produced by a profit-maximizing representative firm. At any date t, the
firm’s production function combines labor Lt and capital Kt−1—which must be installed
one period in advance—to produce Yt units of the consumption goods. The production
function is assumed to be of the Cobb-Douglas type, featuring constant returns to scale
and capital depreciation. The total factor productivity is normalized to one. Formally,
net-of-depreciation production is defined as

Yt = F (Kt−1, Lt) = Kα
t−1L

1−α
t − δKt−1,

where α ∈ (0, 1) is the capital share and δ ∈ (0, 1) is the capital depreciation rate.
The firm rents labor and capital at respective factor prices w̃t and r̃t. The profit

maximization conditions of the firm imply the following expressions for factor prices:

w̃t = FL,t and r̃t = FK,t, (1)
5In the quantitative analysis of Section 4, the Markov chain can be shown to be irreducible and

aperiodic; hence Sfy is known to exist and to be unique.
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where we use FL,t := FL(Kt−1, Lt) and FK,t := FK(Kt−1, Lt) to lighten notations.

Assets. In addition to capital, the economy also features public debt, whose size is
denoted by Bt in period t. Public debt consists of one-period bonds issued by a benevolent
government, which are assumed to be default-free. Because of our assumption of MIT
shocks, there is no aggregate risk in this economy. Both capital and public debt are thus
perfect substitutes, and no-arbitrage implies that they must pay the same after-tax return.
Agents’ savings, denoted by (afi,t)i,f at date t, are restricted to remain greater than an
exogenous limit −a ≤ 0.

Period 0. We assume that the economy starts in period −1 with an endowment of
wealth and productivity (afi,−1, y

f
i,0)i drawn from a distribution Λ0, a given amount of

public debt B−1, and a given amount of capital K−1, which together satisfy K−1 +B−1 =∑F
f=1m

f
´
i
afi,−1`(di). The MIT shock is the public spending path (Gt)t≥0, which is revealed

at period −1 before households actually perform their portfolio choice. As a consequence,
and as there is no aggregate risk, no arbitrage implies that the two assets must have the
same after-tax return in all periods, including period 0. The before-tax real interest rate
between period −1 and period 0 is denoted r̃0, and the MIT shock affects the allocation
from period 0 onward.

Government. A benevolent government has to finance the exogenous stream of public
spending (Gt)t≥0 by levying distorting taxes on capital and labor, and by issuing public
debt. The tax on capital is linear with a rate (τKt )t≥0, and is actually levied on all interest
bearing assets (capital and public debt). The tax on labor income is assumed to be
nonlinear and possibly time-varying. We denote by Tt(w̃yl) the amount of labor tax paid
at date t by an agent earning the pre-tax labor income w̃yl. We follow Heathcote et al.
(2017) (hereinafter HSV) and consider the following functional form:

Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , (2)

where κt captures the level of labor taxation and τt the progressivity. Both parameters are
assumed to be time-varying and will be the planner’s instruments in the general model.
When τt = 0, labor tax is linear with rate 1 − κt; oppositely, τt = 1 corresponds to full
income redistribution, where all agents earn the same post-tax income κt. Functional form
(2) combined with the linear capital tax allows one to realistically reproduce the actual US
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system and its progressivity (see Heathcote et al., 2017 or Ferriere and Navarro, 2023).6

Combining the above elements, the government budget constraint can be written as:

Gt + (1 + r̃t)Bt−1 ≤
F∑
f=1

mf

ˆ
Tt(w̃tyi,f lfi,t)`f (di) + τKt r̃t(Bt−1 +Kt−1) +Bt. (3)

This states that public spending and past public debt repayment can be financed out of
the proceedings of labor and capital taxation, as well as by the issuance of new public
debt. To simplify the government budget constraint, in the spirit of Chamley (1986) we
introduce generalized post-tax factor prices, which are denoted without a tilde. We define
the gross and net interest rates rt and Rt, respectively, and the wage rate wt as:

wt := κt(w̃t)1−τt , (4)

Rt := 1 + rt = 1 + (1− τKt )r̃t. (5)

The model can be expressed analytically using the pair of post-tax rates (Rt, wt) rather
than pre-tax ones (r̃t, w̃t), which simplifies the algebra. The values of the fiscal instruments
τKt , κt, and τt can then be recovered from the allocation. Using the constant return-to-scale
property of the production function, the governmental budget constraint (3) becomes:

Gt +RtBt−1 + wt
F∑
f=1

mf

ˆ
i

(yfi,tl
f
i,t)1−τt`f (di) ≤ F (Kt−1, Lt)− (Rt − 1)Kt−1 +Bt, (6)

which can be interpreted by observing that total output and new public debt are used to
finance public spending, past public debt repayment, post-tax capital rents, and post-tax
wages. In the constraint (6), the effect of factor supplies on aggregate output is fully
internalized by the government. Equation (6) can indeed be interpreted by viewing the
planner as having the economy’s output and newly issued public debt as revenue, and
paying back old debt, public spending, and factor supplies with post-tax rates. This has
two implications, which matter for the discussion of the planner’s choices in Section 3.1.
First, it explains why zero capital tax, which maximizes output, also relaxes the budget
constraint the most. Indeed, if everything else were constant, including Rt, the level of
the capital stock that maximizes the right hand side of (6) would satisfy 1 + FK,t = Rt,
which corresponds to zero capital tax – as can be seen from equations (1) and (5). Second,

6The literature uses either the combination of a linear tax and a lump-sum transfer (e.g., Açikgöz
et al., 2022; Dyrda and Pedroni, 2022) or the HSV structure. Heathcote and Tsujiyama (2021) showed
that the HSV structure is quantitatively more relevant. However, we show in Appendix I that our results
still hold in the presence of an affine tax system.

9



equation (6) also shows that, if everything else were constant, higher post-tax interest and
wage rates have a negative impact on the governmental budget constraint. The planner
would indeed have to give more resources to agents, and have less resources to finance
public spending.

Agents’ program and resource constraints. At each date t, agents consume goods
in quantity ct, supply labor in quantity lt, and save an amount at. They derive an
instantaneous utility from consumption and labor supply denoted by U(ct, lt); the utility
function will be specified later. The discount factor is constant and denoted by β ∈ (0, 1).

Using the post-tax rate definition (4), the post-tax labor income of an agent i of type f
amounts to w̃tyfi,tl

f
i,t − Tt(w̃ty

f
i,tl

f
i,t) = wt(yfi,tl

f
i,t)1−τt , while post-tax capital income is equal

to Rtai,t−1. Formally, the program of agent i of type f endowed with the given initial
wealth afi,−1 can be expressed as:

max
{cfi,t,lfi,t,afi,t}t≥0

E0

∞∑
t=0

βtU(cfi,t, l
f
i,t), (7)

cfi,t + afi,t = Rta
f
i,t−1 + wt(yfi,tl

f
i,t)1−τt , (8)

afi,t ≥ −a, c
f
i,t ≥ 0, lfi,t ≥ 0. (9)

Note that because of our assumption of MIT shocks, the expectation operator in (7)—as
well as in the rest—solely concerns idiosyncratic shocks. (8) is the budget constraint, and
inequalities (9) are the credit constraint and the non-negativity constraints.

The solution of the previous program is a set of policy rules defined over the product
space of productivity histories and initial asset holdings: cft : (Yf)t × [−ā; +∞) → R+,
aft : (Yf)t × [−ā; +∞) → [−ā; +∞), and lft : (Yf)t × [−ā; +∞) → R+. To lighten the
notation, we will simply write cfi,t, a

f
i,t, and l

f
i,t (instead of cft (yf,ti , a

f
i,−1), aft (yf,ti , a

f
i,−1), and

lft (yf,ti , a
f
i,−1)) and use the same notation for all variables.7

Denoting by βtνfi,t ≥ 0 the Lagrange multiplier on the agent’s credit constraint, the
consumption Euler equation can be written as

Uc(cfi,t, l
f
i,t) = βEt

[
RtUc(cfi,t+1, l

f
i,t+1)

]
+ νfi,t, (10)

where we denote by Uc and Ul the first-order derivatives with respect to c and l, and by
7Hence, the aggregation of the variable Xt in period t will be written as

´
i
Xf
i,t`

f (di) instead of the more
involved explicit notation

´
af−1

∑
yf,t∈Yt θ

f
t (yf,t)X(yf,t, af−1)dΛ0(af−1, y

f
0 ), where θft (yf,t) is the probability

of the occurrence of history yf,t in period t for an agent of type f .
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Uxy with (x, y = c, l) the second-order derivatives.
The first-order condition (FOC) on labor is:

−Ul(cfi,t, l
f
i,t) = (1− τt)wtyfi,t(y

f
i,tl

f
i,t)−τtUc(c

f
i,t, l

f
i,t), (11)

and the clearing of financial and labor markets implies the following equalities:

At = Kt +Bt and
F∑
f=1

mf

ˆ
yfi,tl

f
i,t`

f (di) = Lt. (12)

The clearing of the goods market reflects the fact that the sum of aggregate consumption,
public spending, and the new capital stock balances the production output and past
capital:

F∑
f=1

mf

ˆ
i

cfi,t`
f (di) +Gt +Kt = Kt−1 + F (Kt−1, Lt). (13)

The Social Welfare Function. The planner considers a weighted sum of agents’
intertemporal utilities, where the social weight of each agent (sometimes referred to as
Negishi or Pareto weights) is denoted by ωf and depends solely on their time-invariant
type. The utilitarian case corresponds to ωf = 1 for all f . The aggregate social welfare
W0 can thus be written as:

W0 =
F∑
f=1

mfωf
(
E0

∞∑
t=0

βt
ˆ
i∈If

U(cfi,t, l
f
i,t)`f (di)

)
, (14)

where the term between brackets is the sum, over the whole population If , of the ex-ante
intertemporal utilities of agent i of type f . The planner attributes a social weight ωf

to each agent, corresponding to the agent’s type. In addition, the sum of the weighted
utilities of type f agents is itself weighted by the share mf of type f in the total population.
We normalize the social weights to sum to 1: ∑F

f=1m
fωf = 1.

Equilibrium definitions The Ramsey problem with full commitment consists in finding
the fiscal policy that delivers the competitive equilibrium with the highest aggregate social
welfare. We start with the formal definition of a competitive equilibrium.

Definition 1 (Competitive equilibrium (CE)). A competitive equilibrium is a collection
of individual variables (cfi,t, l

f
i,t, a

f
i,t)

i∈If ,f=1,...,F
t≥0 , aggregate quantities (Kt, Lt, Yt)t≥0, prices

(w̃t, r̃t)t≥0, fiscal policy (τKt , κt, τt, Bt)t≥0, and public spending (Gt)t≥0 such that for an
initial distribution of wealth and productivity (afi,−1, y

f
i,0)i∈If ,f=1...F and for initial values of
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capital stock and public debt verifying K−1 +B−1 = ∑F
f=1m

f
´
i
afi,−1`

f(di), the following
holds. i) Given prices, individual strategies (cfi,t, l

f
i,t, a

f
i,t)

f
i,t≥0 solve the agent’s optimization

program in equations (7)–(9). ii) Financial, labor, and goods markets clear: for any t ≥ 0,
equations (12) and (13) hold. iii) The government budget is balanced: equation (3) holds
for all t ≥ 0. iv) The pre-tax factor prices (w̃t, r̃t)t≥0 are consistent with the firm’s program
(1).

Using the previous definition, we now state the formal definition of the Ramsey
equilibrium, and the stationary Ramsey equilibrium.

Definition 2 (Ramsey Equilibrium (RE)). A Ramsey Equilibrium is a competitive equi-
librium, which generates the highest welfare, measured by W0, over the set of fiscal policies
(τKt , κt, τt, Bt)t≥0 satisfying the governmental budget constraint.

Definition 3 (Stationary Ramsey Equilibrium (SRE) ). A stationary Ramsey equilibrium
is a Ramsey equilibrium for which aggregate quantities (Kt, Lt, Yt)t≥0, prices (w̃t, r̃t)t≥0,
fiscal policy (τKt , κt, τt, Bt)t≥0, and public spending (Gt)t≥0 are constant.

First-best allocation. A natural candidate against which to compare the outcome
of the Ramsey equilibrium is the first-best allocation. The latter is the solution of the
program maximizing aggregate social welfare W0, subject only to the resource condition.
Formally, it solves the following program:

max
((ci,t,li,t)i∈I ,Lt,Kt)t≥0

W0, (15)

s.t.
F∑
f=1

mf

ˆ
i

cfi,t`
f (di) +Gt +Kt = Kt−1 + F (Kt−1, Lt), (16)

and
F∑
f=1

mf

ˆ
yfi,tl

f
i,t`

f (di) = Lt, K−1 given.

The solution of this program provides the Pareto frontier of this economy by varying the
social weights ωf .

3 Analyzing Existence and Dynamics in a Simple
Model

We first study optimal fiscal policy in a simple model, in which we can derive analytical
results. The main simplifying assumption is to consider deterministic productivity fluc-
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tuations, as introduced by Woodford (1990). The gain of this approach is that it yields
analytical solutions—including a characterization of the Ramsey allocation—but also that
it provides the proof that positive optimal capital taxation and public debt are the results
of credit constraints, and not of incomplete insurance markets.

The simplifying assumptions introduced in the environment of Section 2 are as follows.

Assumption A. 1. The labor tax is linear: in (2) we set τt = 0 and denote τLt := 1−κt
such that Tt(w̃yl) := τLt w̃yl.

2. The credit constraint is set to zero: a = 0.

3. There is only one productivity process (F = 1 and m1 = 1), which can take only two

values: 0 and 1. The transition matrix is anti-diagonal: Π =
 0 1

1 0

 and there is

initially a unit mass of agents in each productivity level.

In this setup, the planner is endowed with three instruments: a linear capital tax, a
linear labor tax, and public debt. Agents face deterministic productivity variations, which
they can smooth using their savings, subject to borrowing limits. Due to the assumption
about the initial distribution and the anti-diagonal transition matrix, the total population
has been renormalized to 2 and in every period there is a population of mass one that is
employed (called “employed”, with subscript e) and another that is unemployed (called
“unemployed”, with subscript u).

The remainder of this section is organized as follows. In Section 3.1, we characterize
the planner’s first-order conditions for general utility functions, and then discuss different
standard cases (CRRA, DRRA, CARA, GHH, KPR, among others). In Section 3.2, we
focus on the GHH utility function and derive formal existence conditions. In Section
3.3, we provide our main results about the dynamics of public debt in the simple model.
Finally, in Section 3.4, we relax the assumption of a homogeneous population and study
the effects of the SWF weights on the equilibrium capital tax.

3.1 Characterizing the Planner’s FOCs in an SRE

As a preliminary remark, observe that in any non-trivial equilibrium, employed agents
cannot be credit-constrained at any date: otherwise unemployed agents would consume
zero, as they do not earn any labor income. Thus, there are only two possible steady-state
equilibria: one in which unemployed agents are not credit-constrained, and one in which
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they are. Thus, the Ramsey program can be written as follows:

max
(ce,t,cu,t,ae,t,au,t,le,tBt,At,Rt,wt)

∞∑
t=0

βt
(
U(ce,t, le,t) + U(cu,t, 0)

)
(17)

s.t. ce,t + ae,t = Rtau,t−1 + wtle,t, (18)

cu,t + au,t = Rtae,t−1, (19)

Uc(ce,t, le,t) = βRt+1Uc(cu,t+1, 0), (20)

Uc(cu,t, 0) ≥ βRt+1Uc(ce,t+1, le,t+1), with equality if au,t > 0, (21)

−Ul(ce,t, le,t) = wtUc(ce,t, le,t), (22)

F (At−1 −Bt−1, le,t) +Bt ≥ Gt +Bt−1 + (Rt − 1)At−1 + wtle,t, (23)

At = ae,t + au,t, (24)

ae,t, au,t ≥ 0, (25)

ce,t, cu,t > 0 and le,t, lu,t ≥ 0. (26)

The planner maximizes the aggregate welfare criterion (17) subject to the following:
the constraints (18)–(22), which guarantee the optimality of individual choices (budget
constraints, Euler equations, and labor FOC, respectively); the governmental budget
constraint (23); the financial market clearing condition (24); the credit constraints (25);
and the positivity constraints (26).

SRE with non-binding credit constraints. When credit constraints do not bind, we
recover the seminal result of Chamley (1986) and Judd (1985), that the optimal capital
tax is zero in an SRE. Indeed, on the one hand, using the two Euler equations (20) and
(21), we find βR = 1. On the other hand, the planner’s FOC for public debt implies the
modified golden rule at the steady-state: β(1 + r̃) = 1. We deduce that post- and pre-tax
rates must coincide: R = 1 + r̃ and the capital tax is null: τK = 0.8 A positive capital tax
at the steady state can only be optimal in an equilibrium with binding credit constraints.

SRE with binding credit constraints. We characterize the equilibrium where the
credit constraints bind for unemployed agents (au,t = 0 for all t). Since unemployed agents
are credit constrained, the employed and unemployed budget constraints (18) and (19)
simplify into ce,t = wtle,t − ae,t and cu,t = Rtae,t−1.

8We here characterize a SRE. Its existence is however not ensured in all cases, as shown by Straub and
Werning (2020), and as we discuss below.
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To summarize the effects at stake when the planner optimally sets the capital and
labor taxes, we first define the following quantities:

σe := −ce
Ucc(ce, le)
Uc(ce, le)

, σu := −cu
Ucc(cu, 0)
Uc(cu, 0) , (27)

ϕe :=
(
le
Ull(ce, le)
Ul(ce, le)

)−1

, ς lc,e := le
Ucl(ce, le)
Uc(ce, le)

, ςcl,e := ce
Ucl(ce, le)
Ul(ce, le)

. (28)

The quantities σe, σu ≥ 0 in equation (27) are the inverse of the intertemporal elasticity of
substitution (IES) for employed and unemployed agents. The inverse of the IES is also, by
analogy to the static case, referred to as the relative risk aversion (RRA), even though in
our case there is no risk and the correct interpretation is in terms of an elasticity. The IES
is constant for CRRA utility functions, and hence identical for both agents independently
of consumption and labor choices. The quantity ϕe ≥ 0 is the Frisch elasticity of the
labor supply for employed agents. Finally, ς lc,e is the elasticity of the marginal utility of
consumption of employed agents, Uc(ce, le), to labor supply, while ςcl,e is the elasticity of
the marginal utility of labor supply of employed agents, Ul(ce, le), to consumption. These
two last terms are null when the utility function U is separable in consumption and labor.
The next Proposition first presents a characterization of an SRE.

Proposition 1. In any standard SRE with a binding credit constraint for unemployed
households, we have:

1. 1 + FK = 1
β
;

2. The post-tax interest and wage rates satisfy:

1− βR︸ ︷︷ ︸
Smoothing wedge

= FL − w
w︸ ︷︷ ︸

Labor wedge

σu − σe + ς lc,e
σe + 1

ψe
− ς lc,e + ςcl,e︸ ︷︷ ︸ .

Net Distributional Gain

(29)

The proof can be found in Appendix F.1.9 Before commenting on the equality (29),
two remarks are in order. The first part of the proposition has been well known since
Aiyagari (1995), and is called the modified golden rule. Since the government faces no
credit constraint, it is optimal to set the public debt so that the marginal productivity

9We refer to a standard SRE as an equilibrium where Lagrange multipliers are finite. We characterize
the existence of these equilibria in Proposition 3.2.1 below. Lansing (1999) has shown that in the special
case of an IES of 1, a SRE could exist in a representative agent model, with diverging Lagrange multipliers.
This is not the case in our model as shown in Appendix C.8.
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of capital equals the discount rate. As noted above, this depends solely on the planner’s
ability to adjust public debt freely, and is independent of whether or not credit constraints
are binding for private agents. A second remark is that condition (29) is a necessary
condition of the SRE when credit constraints are binding for unemployed agents. This is a
first step towards characterizing the existence of such equilibria, which is not ensured at
this stage.

To better understand the naming of terms and the intuitions in equation (29), it
is worth considering the planner’s optimality conditions. Different perspectives on the
planner’s optimization program are possible; however, the simplest way to understand the
relationship (29) between post-tax interest and wage rates is to think of the planner as
jointly setting savings and the labor supply, while internalizing the general equilibrium
effects (through prices) of its choices. First, the FOC associated with the savings choice
can be written as:

1− βR = Ξ×
(
σu − σe + ς lc,e

)
, (30)

where Ξ ≥ 0 is a product of various Lagrange multipliers summarizing equilibrium
distortions. When the planner sets the level of savings, equation (30) shows that the
planner trades off the marginal benefit of higher savings, implying a larger tax base (on
the left hand side), with the related marginal cost that channels through higher post-tax
interest and wage rates (on the right hand side). The marginal benefit is proportional to the
capital tax, since an extra unit of saving increases the capital tax base. Indeed, because of
the modified golden rule, we have: 1−βR = β(1+FK−R) = β(r̃−r) = (1−β)τK . When
the capital tax is positive, βR < 1 and the Euler equation implies imperfect consumption
smoothing. Thus, the term 1− βR is called a “smoothing wedge.” Absent any costs, the
planner would set savings so as to maximize the benefit for its resources – and hence set
the marginal benefit to zero. This would imply a zero capital tax and 1 + FK = R, as
discussed after equation (6).

The planner does not maximize the benefit of savings for its resources because of the
externality of savings that tends to increase post-tax interest and wage rates, which is
detrimental for the planner’s resources as explained after equation (6). Note that there
is no direct welfare effect of this extra saving, due to the envelope theorem. By the
construction of the Ramsey program, the planner chooses savings that are optimal for
households and thus consistent with the Euler equation. The externality of savings on
prices channels through the agents’ consumption. Extra savings raise the consumption of
the unemployed and reduce the consumption of employed. Both effects contribute to raise
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the post-tax interest rate via the Euler equation (20). However, the lower consumption
of the employed in general decreases the wage rate due to the FOC on the labor supply
(22).10 When the net total effect of extra savings on interest and wage rates is detrimental
to the planner’s resources, the externality of savings on factor prices is a cost for the
planner and limits the increase in savings to value that means positive capital tax.

When the utility function is separable, the externality of savings on post-tax factor
prices is proportional to the curvature of the utility function, and more precisely to
the inverse of the IES. This can be easily seen with unemployed agents. Since their
budget constraint is Rt+1ae,t = cu,t+1, the effect of a change in prices due to a marginal
increase in savings (and thus higher consumption by unemployed agents) is proportional
to ∂Rt+1

∂cu,t+1
ae,t, which is equal to ∂ logRt+1

∂ log cu,t+1
. Because of the Euler equation, this is the inverse

of the intertemporal elasticity of substitution, σu. For employed agents, the extra savings
(and hence the lower consumption of the employed) affect both the interest and the
wage rates and yields the sum of elasticities −ae,t ∂ logRt+1

∂ce,t
− wtle,t ∂ logwt

∂ce,t
, which using the

budget constraint (18), the Euler equation (20), and the FOC (22) on the labor supply
becomes −σe. Therefore, in the separable case, the externality of savings on factor prices is
proportional to the gap between the inverse IES of employed and unemployed agents. In the
general non-separable case, the effect on the employed further includes a cross-derivative
term, ς lc,e coming from the term ∂ logwt

∂ce,t
.

As a take-away, equation (30) states that when setting aggregate savings, the planner
trades off the benefits of a larger capital tax base with the cost of higher post-tax factor
prices. An alternative interpretation is that at the equilibrium, the planner uses the capital
tax to correct the externality of savings on factor prices that would otherwise let the
agents save “too much” from a social perspective: the planner uses their instruments to
correct the negative externality of post-tax factor prices on savings.11

Additionally, the FOC related to the labor supply of the employed can be written as:

FL − w
w

= Ξ×
(
σe + 1

ψe
− ς lc,e + ςcl,e

)
, (31)

10The effect actually depends on the cross derivative of the utility function with respect to consumption
and labor. When the utility is separable, a lower consumption of employed agents always decreases the
wage rate. When Ucl < 0, the effect is mitigated and can possibly have a different sign. For instance, with
a GHH utility function, the wage rate is independent of employed consumption.

11This argument is reminiscent of the one in Dávila et al. (2012), where in the laissez-faire economy
agents can save too much because they do internalize the effect of their savings on factor prices. In our
environment, at the SRE the planner considers the effect of the price externality on the budget constraint
of the government.
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with the same multiplier Ξ ≥ 0 as in FOC (30). The interpretation follows the same line
as the interpretation of FOC (30). The planner trades off the benefit of an additional
hour of labor supply in terms of a higher labor tax base, with the cost of higher post-tax
factor prices. On the one hand, for the planner’s resources (6), an additional hour of labor
supply increases total output by FL,t at the cost of higher (after-tax) wage wt. Thus, the
effect is proportional to the gap between FL,t and wt, and hence to the labor tax. An
equivalent view is that the higher labor supply increases the base of the labor tax, and thus
the planner’s resources, in proportion to τLt . On the other hand, the cost again operates
through the externality of the labor supply on post-tax factor prices – and hence only
concerns employed agents. Since the extra labor supply also increases consumption of
the employed, the effect in the separable case is proportional to ∂ logwt

∂ log ce,t + ∂ logwt
∂ log le,t , which

equals σe + 1/ϕe. The non-separable case features two additional interaction terms, equal
to −ς lc,e + ςcl,e involving cross derivatives of the utility function.

Separable utility functions : CRRA, DRRA, CARA and IRRA cases. The
equality (29) has important implications for specific utility functions. For separable utility
functions, the cross-derivative terms are zero and ς lc,e = ςcl,e = 0, which simplifies the algebra
(as well as the intuition, somewhat). We distinguish three cases: Constant, Decreasing and
Increasing Relative Risk Aversion utility functions (CRRA, DRRA, IRRA respectively).
Detailed calculations and numerical examples can be found in Appendix B.

First, the CRRA separable case, U(c, l) = c1−σ−1
1−σ − v(l), with σ 6= 1, or U(c, l) =

log c− v(l), implies σu = σe = σ independently of consumption levels. Since there is no
externality of savings on prices, the planner sets savings so as to maximize their impacts
on its resources: 1 + FK = R, or τK = 0. Steady-state capital taxes are null in this
equilibrium. This outcome generalizes the result of Chamley (1986) to an economy with
an occasionally-binding credit constraint, but only for this specific utility function. It is
consistent with the claims of Chen et al. (2020); Auclert et al. (2022); Chien and Wen
(2023) – the latter provided a general proof considering the CRRA case. We summarize
this result in the next corollary.

Corollary 1. If the utility function is U(c, l) = u(c)− v(l), where u is CRRA, then the
capital tax is 0 in SRE.

For other cases, observe that a positive capital tax implies βR < 1 and hence cu < ce

when credit constraints are binding. For DRRA functions, we have σu > σe and the net
distributional gains in (29) are positive. Savings imply a negative externality on post-tax
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factor prices. The planner avoids to increase these factor prices too much and ends up
with a positive capital tax. Thus, the equilibrium, if it exists, will then feature positive
capital and labor taxes. We provide examples of such equilibria for Stone-Geary utility
functions in Appendix B.1.1 and for Fishburn utility functions in Appendix B.1.2.12

For the IRRA utility function, the situation is slightly more involved. On the one hand,
savings still involve a negative externality on factor. However, since σu < σe, the negative
externality of savings in (30) is the combination of savings decreasing interest rates and
wages (rather than increasing them as in the DRRA case), and of post-tax factor prices
having a positive externality on savings (and not negative as in the usual case discussed
after equation (30)). The latter relationship implies that the labor supply in (30) has a
positive externality on agents, and hence that labor should be subsidized. Therefore, the
equilibrium, if it exists, features a positive capital tax but a negative labor tax. A standard
example of an IRRA utility function is a Constant Absolute Risk Aversion (CARA) utility
function, U(c, l) = − 1

γ
e−γc − 1

χϕ
eϕl, where γ, ϕ > 0. These functions are used by Acharya

and Dogra (2021) and Acharya et al. (2023), among others. We have σ(c) = γc, which is
increasing. See Appendix B.2 for a numerical example with a CARA utility function.

Non-Separable utility functions: The GHH case. A standard non-separable utility
function considered in the literature is the GHH utility function. This instantaneous utility
function U is:

U(c, l) := u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
, (32)

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and the
function u has a constant IES equal to 1/σ ≥ 0. This function has the property that
the labor supply exhibits no wealth effect. It has been used for instance in the seminal
contributions of Aiyagari (1995) and Diamond (1998) to obtain analytical results, but
also in some quantitative work (e.g., Bayer et al., 2019 and Açikgöz et al., 2022), as it
simplifies the computation of the equilibrium allocation.

Applying the equality (29) in the context of the GHH utility function yields the
following relationships between smoothing and labor wedges:

1− βR = FL − w
w

ϕσ
(
1 + β (βR)

1
σ
−1
)
. (33)

12Fishburn (1977) analyzes a utility function which is isoelastic below a threshold and linear after it.
This utility function was used by Challe and Ragot (2016) and LeGrand and Ragot (2018) because it
generates tractable models.
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In the case where σ = 1 (and thus u(c) := log(c)), this expression can be further simplified
into a simple relationship relating the capital and labor taxes:

(1− β)τK = τL

1− τLϕ(1 + β). (34)

This shows that in equilibrium, the capital tax increases with the labor tax: both distortions
increase together with the financial requirements that the planner has to finance.13 In
particular, the capital tax is positive whenever the labor tax is.14

Finally, for the sake of completeness, we also consider another example of a non-
separable utility function, which is the one of King-Plosser-Rebelo (King et al., 1988),
used for example by Dyrda and Pedroni (2022). We provide results in Appendix B.3. We
find that an SRE with positive capital and labor taxes can exist only for some restrictions
on the parameters, which is the case considered by Dyrda and Pedroni (2022).

3.2 An Existence Result in the GHH Case

We now focus on the GHH case with an IES of 1. We consider this utility function for the
rest of the paper.

Before presenting these existence conditions, three remarks are in order. First, even in
this simple framework, we must check that the Karush–Kuhn–Tucker conditions apply
to our problem, and that the FOCs actually characterize an optimum. Because of
the nonlinearity of the constraints (20)–(23), the standard Slater (1950) condition does
not apply in our optimization program. Therefore, we must check another constraint
qualification; this is done in Appendix C.2, where we verify that the linear independence
constraint qualification holds. Second, we verify that the second-order conditions of the
Ramsey planner are also fulfilled, such that the FOCs indeed characterize a maximum.
This is done in Appendix C.3. Finally, we also consider an IES different from 1 in Appendix
C.8, but we keep the simplest case in this Section.

3.2.1 First-best allocation and possible decentralization

As is standard in this type of problem, the first-best outcome can be attained if public
spending is not too high. In this case, public debt is negative (the government thus holds

13One can check that τK/τL increases with the discount factor β and the Frisch elasticity.
14When β increases towards 1 from below, equation (34) would imply that the capital tax would increase

without limit relative to the labor tax. However, the equilibrium does not exist in this case, as shown in
Section 3.2 below, where the existence proof is provided.
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a share of the capital stock) and the government finances public spending out of interest
payments on its asset holdings. This is stated formally in the next proposition, whose
proof can be found in Appendix C.1, together with the value of the steady-state first-best
level of output YFB.15

Proposition 2. Define:

g1 := 1− β
β

α

1/β + δ − 1 −
1− β
1 + β

1− α
ϕ+ 1 . (35)

If public spending verifies G ≤ g1YFB, then the steady-state Ramsey allocation is the first-
best steady-state allocation characterized by zero taxes and perfect consumption smoothing.

When G > g1YFB, the first-best allocation cannot be sustained, because financing such
a large public spending out of capital income requires the government to hold a financial
asset position that would exceed the total capital stock in the economy16.

3.2.2 Binding credit constraints

When the first-best allocation cannot be sustained, the credit constraints of the unemployed
agents must bind. The next proposition characterizes the existence of the equilibrium with
credit constraints.

Proposition 3. There exist two thresholds gLa and gSW , defined as:

gLa := 1− α
ϕ

(
1 + 1− β

1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− τLLa)1+ϕ, (36)

where: τLLa = 1
1 + ϕ

− 1
1− α

ϕ

1 + ϕ

g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
, (37)

gSW := g1 + (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− 1

1 + ϕ(1 + β))ϕ, (38)

such that when g1YFB < G ≤ min (gSW , gLa) × YFB, there exists a unique SRE with a
binding credit constraint for unemployed agents, where both taxes τL and τK are positive.

The proposition is proved in Appendices C.4 and C.5. In addition to the non-first-best
condition, g1YFB < G, the existence of the steady-state equilibrium is subject to two

15This non first-best condition is the condition identified in more general settings by Albanesi and
Armenter (2012), for the optimal steady-state capital tax not to be zero.

16This would imply that the government lends resources to households, which is prevented by credit
constraints.
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additional conditions, reflected in the two thresholds (gSW and gLa) for public spending.
The first threshold gSW ensures that the consumption of unemployed agents is positive
and that the Lagrange multiplier µ on the governmental budget constraint (23) is constant
and finite.17 When G increases toward gSWYFB, the planner needs to raise capital taxes
so high that the post-tax return of savings tends to zero, as does the consumption of
unemployed agents. In this case, the government finds it infinitely costly to implement
the steady-state optimal allocation, as taxes and distortions become infinitely high. This
explains why the Lagrange multiplier on the governmental budget, µ, tends to infinity.
At the threshold gSWYFB, the planner prefers to switch to a non-stationary equilibrium,
where output is decreasing. This limit case has been discussed recently by Straub and
Werning (2020), justifying the SW subscript and the denomination of Straub-Werning
condition. To summarize, if G > gSWYFB, then no (stationary) steady-state equilibrium
exists, and a non-stationary equilibrium may exist, as studied in Appendix C.6.18

The threshold gLa corresponds to a more traditional Laffer condition. When G is higher
than this last threshold, not enough resources can be raised in the economy through the
distorting taxes to finance public spending. We prove in Appendix C.4 that the constraints
g1YFB < G ≤ min (gSW , gLa)×YFB are compatible for some G and some parameter values.
However, stating which of gSW or gLa is greater in general is not possible, as both cases
are possible depending on parameter specification. For instance, when α is close to 1, we
have gSW < gLa, while when both α and ϕ are close to 0, the opposite holds.

The allocation can be derived explicitly in this tractable economy. Because of the GHH
assumption, the labor supply of the employed agent is given by le = (χw)ϕ, while their
saving is ae = β

1+β
w(χw)ϕ

1+ϕ . Using the expression (34) together with the government’s budget
constraint (23) at steady state, we can obtain an explicit expression for the post-tax real
wage, thus providing an analytical solution to the allocation: w = (F (kFB ,1)−G)(1+ϕ)+wFBϕ

1+2ϕ+ 1−β
1+β

,

where wFB = (1− α)kαFB and kFB =
(

α
1
β

+δ−1

) 1
1−α are the first-best capital-to-labor ratio

and wage rate, respectively (see Appendix C for further details). The labor tax is then τL =
17In the case of the log-GHH utility function, the two conditions are identical. When the IES differs

from one, the conditions cu > 0 and µ > 0 differ from each other, and the condition µ > 0 typically binds
first. See Appendix C.8 for further details. In addition we also show that the allocation and the dynamic
of Lagrange multipliers are continuous in the IES, such that the specific case identified by Lansing (1999)
and Reinhorn (2019) (i.e. diverging multipliers and converging allocation) for the IES of 1 does not exist
in our environment.

18When β increases from below towards 1, we find that the Straub-Werning threshold decreases and
gSW < g1, implying that there is no steady-state equilibrium for any G (see equations (38) and (96) in
the Appendix). As a consequence, the capital tax cannot increase without bound as equation (34) would
imply.
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1−w/wFB and the capital tax is given by equation (34). Finally, public debt can be deduced
from the capital market clearing condition: B = ae −K = (χw)ϕ( β

1+β
1−τL
1+ϕ wFB − kFB).

19

3.2.3 When is optimal public debt positive?

This model can generate a positive amount of optimal public debt, as stated in the following
result, which is proved in Appendix C.7.

Result 1. There exists a threshold gpos defined as:

gpos = 1 + β

1− β (1 + 2ϕ)(−g1), (39)

such that steady-state public debt is positive, B ≥ 0, iff g1 ≤ 0 and G ≤ gposYFB.

The joint positivity of public debt and capital tax is not obvious: why would the
planner provide more public debt to the market (more liquidity in the sense of Woodford,
1990) and then tax the return on public debt with a positive capital tax? In an equilibrium
with positive public debt, the equilibrium savings of employed agents are higher than
the optimal capital stock, and the extra savings are absorbed by the public debt. From
this allocation, decreasing public debt would inefficiently increase the capital stock, and
would further require an increase in the capital tax to reduce savings, which would hinder
consumption smoothing. Thus, public debt enables the planner to absorb the excess of
savings and reconcile the high savings of private agents with the optimal capital stock
without affecting consumption smoothing too drastically. This explains the condition
g1 ≤ 0, which states that, no matter the level of public spending, it is never optimal
for the government to hold a share of capital to finance public spending. The agents’
savings motives are indeed too strong given the level of capital in the economy. The second
condition G ≤ gposYFB comes from the fact that a high level of public spending requires a
high level of distorting taxes, and thus a lower level of private saving. As a consequence,
the public debt necessary to absorb the excess saving is decreasing with G. If G is too
high, optimal debt becomes negative.

19When an SRE with a positive capital tax exists, we can show that the planner does not want to
implement any lump-sum transfers, since they would require raising distortionary taxes to implement.
The proof is in Appendix C.4.
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3.2.4 Conclusion about existence

We have characterized four conditions, given by g1, gSW , gLa and gpos for the existence
of an SRE with positive optimal capital taxation and public debt. These conditions
are independent, but can be satisfied simultaneously for some parameter values.20 For
instance, we use the following parameters (ensuring existence) to study the steady state
and dynamics of the simple model in Appendix D.3. The parameters are α = 0.3, β =
0.7, ϕ = 0.3, δ = 1, G = 0.01, χ = 1, and one can check that ḡ1YFB < G, G ≤ gSWYFB,
G < gLaYFB, and G < gposYFB. This economy has an equilibrium capital tax of 6%, a
labor tax of 3%, and a (small) positive public debt. Larger values of public spending G
reduce the public debt, which can become negative. There is actually no interior steady
state, as discussed in Appendix C.5, although non-interior equilibria may exist. Since
these properties are close to those derived by Straub and Werning (2020), we present them
in Appendix C.6.

3.3 Dynamic Analysis of Public Debt

We now use the simple model to derive some insights about the optimal dynamics of
public debt after a public spending shock. We assume full capital depreciation, δ = 1, and
consider a first-order approximation of the model.

Time consistency. It is interesting to note that in the log-GHH case with log period
utility (32), the program of the planner is time-consistent, although capital is fixed in
period 0 and capital taxes are chosen at period 0 (which is not the case in more general
settings, as discussed below and in LeGrand and Ragot, 2023). Indeed, in this case, and
when credit constraints bind, the saving of employed agents does not depend on the
post-tax real interest rate, but only on the post-tax real wage (see Appendix C.4).21

Linearization. We denote with a hat the relative deviation of a variable from its steady-
state value: x̂t = xt−x

x
for a generic variable xt with steady-state value x. The public

20Regarding uniqueness, in the log-GHH case, we can prove the uniqueness of the SRE. However, this
is not true in the general case, when the IES is different from one. Even with a GHH utility function,
if the IES differs from one, multiple allocations can satisfy the planner’s FOCs while satisfying the
Straub-Werning and Laffer conditions. See Appendix C.8 for a numerical example.

21More precisely, the Lagrange multipliers on the previous period’s Euler equations do not affect the
current period allocation. See Appendix C.4.
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spending shock is assumed to be defined as follows:

Ĝt =

Ĝ0 if t = 0,

ρGĜt−1 if t > 0,
(40)

with Ĝ0 small enough for a first-order approximation of the dynamics to be relevant, and
ρG ∈ (−1, 1). The shock only happens at date t = 0 and then persists with parameter ρG,
as is consistent with our assumption of an MIT shock.

Characterization of the system stability. Our first result is to characterize the
stability of the dynamic system that yields the Ramsey allocation, using the FOCs of the
planner. Interestingly, the dynamic of the Ramsey allocation can be fully summarized by
taking capital as the unique state variable, together with the public spending shock.

Result 2. The optimal dynamic of the capital stock is given by the following system:

K̂t = ρKK̂t−1 + σKĜt, (41)

where the coefficients ρK > 0, σK < 0. ρK does not depend on ρG and ∂σK
∂ρG

> 0.

See Appendix D.1 for the expressions of the coefficients and computations. Thus at
impact, an increase in public spending diminishes capital, and the higher the persistence
of the public spending shock, the stronger the effect.

The dynamic system (41) is stable when the auto-regressive coefficient ρK is smaller
than one in absolute value. In our setup, this is equivalent to verifying the Blanchard–
Kahn conditions. The result regarding system stability is summarized in the following
proposition.

Proposition 4. The system (41) is stable, i.e., |ρK | < 1, iff

α ≤ 1
1 + (1− β)(1 + ϕ) . (42)

The dynamic system is stable under (42), which is called the Blanchard-Kahn condition
and which imposes an upper bound on α. Note that this upper bound is always strictly
smaller than one and hence can be binding. Condition (42) on α always holds when public
debt is positive, i.e., when g1 < 0. When the capital share α and the Frisch elasticity ϕ
are both high (such that (42) is not fulfilled), a small shock in public spending induces
too large a change in the resources of the planner, such that capital diverges.
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By induction, we can derive from (40) and (41) the closed-form expression of the
impulse response function for optimal capital:

K̂t = σKĜ0
ρt+1
K − ρt+1

G

ρK − ρG
. (43)

This allows us to completely characterize the capital path following a public spending
shock. At impact and after a positive shock (Ĝ0 > 0), the relative variation of capital
is always negative by a quantity σKĜ0 < 0. Then, the profile of the capital variation is
hump-shaped: it starts decreasing further, before increasing and reverting back to zero
(see Appendix D.2 for further characterization of the dynamics of the capital stock).

Role of the persistence of the public spending shock ρG on public debt. From
the expression for capital (43), it is possible to derive an explicit expression for the optimal
dynamics of public debt:

B̂t = Ĝ0(ΘKρtK −ΘGρtG). (44)

The coefficients ΘK ,ΘG are functions of the parameters of the model but not of Ĝ0 and
are provided in equations (127) and (128) of Appendix D.2. These parameters can be
either positive or negative. As a consequence, on impact, the change in public debt,
B̂0 = Ĝ0(ΘK −ΘG), after a positive public spending shock (Ĝ0 > 0) can be either positive
or negative, because the sign ΘK −ΘG is ambiguous. We can characterize the effect of the
persistence of the shock on the initial change of public debt, considering two cases. First,
we analyze the effect of ρG with fixed Ĝ0 to understand the mechanisms. Our second
experiment focuses on studying the effect of ρG while keeping the NPV of public spending
unchanged. More formally, we keep the following quantity unchanged, denoted by ˆNPV0:

ˆNPV0 =
∞∑
t=0

Ĝt

Rt
= Ĝ0

∞∑
t=0

(
ρG
R

)t
= Ĝ0

R

R− ρG
.

Keeping the NPV unchanged while changing ρG implies setting the initial size of the shock
to Ĝ0(ρG) = ˆNPV 0

R−ρG
R

. This is summarized in the following proposition.

Proposition 5. Assume that the steady-state public debt is positive: B > 0. Denoting by
B̂0 the variation of public debt on impact, we have

∂B̂0

∂ρG

∣∣∣∣∣
Ĝ0

< 0.

26



Moreover, if we further assume B̂0 > 0, we also have

∂B̂0

∂ρG

∣∣∣∣∣ ˆNPV 0

< 0.

See Appendix D.2 for the proof. The intuition for why the dynamic of the debt depends
on the persistence of the shock is the following. After a positive public spending shock,
capital is always falling, but to implement consumption smoothing the planner does not
want to decrease private savings (which are used by unemployed agents to consume).
Consequently, when the persistence of the shock is low, the planner increases public debt
to provide a store of value to private agents. Then, a small increase in future taxes allows
one to reduce public debt. When the persistence is high, this strategy is very costly
in terms of welfare, because the fall of the capital stock is persistent, and the planner
would have to increase taxes to reduce public debt in periods when capital and output are
low. Consequently the planner does not increase public debt, in order to avoid having to
raise taxes in the future to stabilize this debt. Finally, we check in Appendix D.3 with a
simple numerical example that Proposition 5 still holds when we consider a non-marginal
variation in the persistence.

3.4 Ex-Ante Heterogeneous Populations and Social Weights

We extend the previous GHH case, introducing further heterogeneity between agents, in
order to analyze the role of social weights in the determination of the optimal capital tax.
We now consider two types of agents facing different labor income risk (F = 2 using the
notation from Section 2). We consider an environment where one type of agent always
remains employed, and will not save in equilibrium (reproducing the environment of Judd,
1985), whereas the other type of agent alternates between employment and unemployment,
similarly to the agent in Section 3.1. We use the superscript A to denote the type that
alternates between employment and unemployment, and the superscript B for the agents
who remain employed, and who will not save in equilibrium. The productivity of employed
agents is denoted yA and yB. The population size of each type is denoted by Ωx ∈ [0, 1],
x = A,B with ΩA + ΩB = 1. The planner deviates from a Utilitarian objective, and the
social welfare weights on the two types of agents (may) differ from their actual shares
in the population. The weights in the social welfare function are denoted by ωx ∈ [0, 1],
x = A,B with ωA + ωB = 1.

The market clearing condition implies Lt = ΩAyAlAe,t + ΩByBlBe,t for the labor market
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and At = ΩAaAe,t for the capital market. The planner’s objective can be written as:

ωA
∞∑
t=0

βt

log(cAe,t − χ−1 l
A,1+1/ϕ
e,t

1 + 1/ϕ) + log(cAu,t)
+ ωB

∞∑
t=0

βt log(cBe,t − χ−1 l
B,1+1/ϕ
e,t

1 + 1/ϕ). (45)

where we restrict to the log case as before. For the sake of simplicity, we define:

Λ := ΩBwyBlBe
ΩAwyAlAe

= ΩB(yB)ϕ+1

ΩA(yA)ϕ+1 ,

which is the ratio between labor income of type B agents and that of type A agents. It
captures the inequality in labor income between the two populations. The further away
Λ is from 1, the greater the inequality. The following proposition summarizes our main
result.

Proposition 6. In any interior SRE, the smoothing and labor wedges verify:

1− βR
ωA︸ ︷︷ ︸

Smoothing wedge

= ωB

ωA
− (1 + β)Λ︸ ︷︷ ︸

Redistribution

+ FL − w
w

ϕ︸ ︷︷ ︸
Labor wedge

(1 + β)(1 + Λ)︸ ︷︷ ︸,
Distributional Gain

(46)

or equivalently, capital and labor taxes are related by

(1− β)τ
K

ωA
= ωB

ωA
− (1 + β)Λ + ϕ(1 + β)(1 + Λ) τL

1− τL . (47)

The proof can be found in Appendix E. Proposition 6 shows that social preferences
(ωA, ωB) and the optimal tax system are intertwined. On the one hand, from a given set
of social preferences (ωA, ωB), the fiscal policy (τK , τL, B) and the SRE can be derived.
In fact, equation (47) gives τK as function of τL, which is then pinned down by the
government budget constraint. Public debt is given by the financial market clearing
condition. On the other hand, for a given fiscal policy (τK , τL, B) and an SRE equilibrium,
the social preferences (ωA, ωB) of the planner can be derived from equation (47). The
latter relationship is known as the inverse optimal approach, where the social weights are
found in order to replicate an observed fiscal system, which is assumed to be optimal. This
approach is used in the general model of Section 4, where we characterize the weights that
allow the model’s steady state to replicate the actual US fiscal system, in order to study
its dynamics.

What is the intuition of equation (46)? Since only type-A agents save, while both
types supply labor, the distortions associated with the interest rate affect only type-A
agents while both types are affected by the distortions associated with the wage rate. This
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explains why the smoothing wedge is divided by the weight of type-A agents, ωA, while
the labor wedge is actually divided by the weight of the total population ωA + ωB = 1.
The relationship (46) includes a third term called “redistribution”, which comes from the
fact that social weights of agents differ from their no-distribution weights. These latter
weights are equal to the inverse of marginal utility, such that the planner would not want
to implement any redistribution between types. In our log-GHH setup, (1 + β)Λ is equal
to the ratio of type-A marginal utilities to type-B marginal utilities, and thus to the ratio
of no-distribution weights. The further the social weights are from the no-distribution
weights, the higher the capital tax is relative to the labor tax. This is consistent with the
fact that type-B agents pay only the labor tax (but not the capital tax), so increasing
their social weight increases the social welfare impact of higher labor taxes. The effect
of the weight on the redistribution term always dominates its effect on the smoothing
wedge term. Thus, social weights play an intuitive role in the composition of the tax
scheme: A higher weight ωB on type B agents increases the capital tax relative to the
labor tax. Finally, we can observe that the effect of a higher actual share ΩB of type B
agents on the capital tax (i.e., a higher Λ) is ambiguous, as can be seen in equation (47).
On the one hand, it increases the total labor income in the economy (since B-agents are
always employed), which increases the tax base of the labor tax, allowing a reduction of
the labor tax (for a given capital tax). On the other hand, a higher share ΩB reduces the
redistribution motive as it reduces the gap between relative social weights and relative
no-distribution weights. This tends to raise the labor tax relative to the capital tax.

4 The General Model

We now show that the previous results about the price externality and the optimal public
debt dynamics hold in the general model. We now analyze the model of Section 2, while
considering a GHH utility function.

4.1 Description and planner’s FOCs

Taking advantage of the GHH utility function allows us to simplify the Ramsey program,
with some changes of variables. First, the labor choice of an agent i of type f , or an
(i, f)-agent in short, given by (11) can be written as lfi,t = lt(yfi,t)

1−τt
1/ϕ+τt , where:

lt := (χ(1− τt)wt)
1

1/ϕ+τt . (48)
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The quantity lt can be interpreted as the labor supply of an agent endowed with a
productivity of 1, and will hence be called the unitary labor supply.22 Second, we define
an increasing transformation of the progressivity τt as

τ̃t := (1/ϕ+ 1)(1− τt)
1/ϕ+ τt

∈ (0, 1 + ϕ], (49)

where τ̃t = 1 + ϕ corresponds to linear taxation and τ̃t → 0 to full income redistribution
(i.e., τt = 1, which is always a dominated option for the planner). Third, we define the
aggregate quantity xfi,t := cfi,t − χ−1 (lfi,t)

1+1/ϕ

1+1/ϕ , such that the period utility of an agent (i, f)
is simply denoted u(xfi,t), while their budget constraint is:

xfi,t = (1 + rt)afi,t−1 − a
f
i,t + 1

χτ̃t
l
1/ϕ+1
t (yfi,t)τ̃t .

We can similarly rewrite the governmental budget constraint (6) using this notation.
Formally, the Ramsey program can be written as follows:23

max
(rt,τ̃t,Bt,Kt,Lt,lt,((afi,t,xfi,t,νfi,t)i∈If )f∈{1,...,F})t≥0

F∑
f=1

mfωf
∞∑
t=0

βt
ˆ
i

u(xfi,t)`f (di), (50)

Gt + Tt + rtAt−1 +
(

1
τ̃t

+ 1
1/ϕ+ 1

)
l
1/ϕ+1
t

χ

F∑
f=1

mf

ˆ
i

(yfi,t)τ̃t`(di) = (51)

F (At−1 −Bt−1, Lt) +Bt −Bt−1

for all i, f : xfi,t = (1 + rt)afi,t−1 − a
f
i,t + 1

χτ̃t
l
1/ϕ+1
t (yfi,t)τ̃t , (52)

u′(xfi,t) = βEt[(1 + rt+1)u′(xfi,t+1)] + νfi,t, (53)

afi,t ≥ −ā, ν
f
i,t(a

f
i,t + ā) = 0, νfi,t ≥ 0, xfi,t ≥ 0, lfi,t ≥ 0, (54)

At =
F∑
f=1

mf

ˆ
i

afi,t`
f (di), Lt = lt

F∑
f=1

mf

ˆ
i

(yfi,t)
1/ϕ+1+τ̃t

1/ϕ+1 `f (di). (55)

Once the previous program has been solved, we can recover τt, wt, lfi,t and c
f
i,t from the

resulting allocation. The constraints guarantee that the governmental budget is balanced
in (51) and that the planner actually selects a competitive equilibrium characterized by
individual budget constraints (52), individual Euler equations (53), individual credit and
positivity constraints (54), and market clearing conditions (55).

In Section 3, we derived the planner’s FOCs using a primal approach, where prices
22This change in variable makes it unnecessary to solve for the labor supply of individual agents.
23The condition xfi,t ≥ 0 and lfi,t ≥ 0 imply cfi,t > 0.
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are substituted in using the FOCs of households (e.g., as in Bhandari et al., 2021). Here,
we use the factorization approach, based on Marcet and Marimon (2019) and developed
in LeGrand and Ragot (2022a). Both methods provide the same FOCs, as we show in
Section F.2. However, the factorization approach is better suited to the interpretation
and the resolution of the general case. The goal of Marcet and Marimon (2019) is to
provide a recursive formulation for optimization problems with forward looking constraints
(which here are the Euler equations of unconstrained agents). At the beginning of their
construction (see equations (5) and (6) of Marcet and Marimon, 2019), they show that one
can write the Lagrangian and then manipulate the terms to maximize the discounted sum
of a single term. This term embeds forward-looking constraints and has no expectation
term. This is the first step before writing a recursive formulation. We do not use the
recursive formulation in our paper and only derive FOCs of the sequential problem. We
thus avoid the question of the existence of a Bellman equation for the planner, where the
Lagrange multipliers on the Euler equations would be state variables.

We denote as βtλfi,t the Lagrange multiplier on the period-t Euler equation (53) of
agent i of type f . When the credit constraint of agent i is binding, we have afi,t = −ā and
λfi,t = 0 because the Euler equation is not a constraint. When the credit constraint does
not bind, the equilibrium can feature either λfi,t > 0 or λfi,t < 0 depending on whether the
agents save too much or too little (from the planner’s perspective). Similarly, we denote
by βtµt the Lagrange multiplier on the government budget constraint (51).

To save space, we derive the planner’s FOCs in Appendix F, and provide the main
results here. Note that we follow the literature and assume that the solution is interior
and that the planner’s FOCs are sufficient to characterize the optimal allocation. We
provide some quantitative checks below.

To simplify the interpretation of the FOCs of the Ramsey program, we introduce the
marginal social valuation of liquidity for agent i of type f defined as:

ψfi,t := ωfu′(xfi,t)− (λfi,t − (1 + rt)λfi,t−1)u′′(xfi,t). (56)

This complex expression has a simple interpretation. It is the value for the planner of
transferring one unit of resources to agent i of type f (if possible). First, the extra unit is
valued by the marginal utility weighted with the proper weight, ωfu′(xfi,t). Second, this
extra unit of resources also affects the savings incentives, both from period t− 1 to t (the
term in λfi,t−1) and from period t to t + 1 (the term in λfi,t). These last two effects are
weighted by the variation in marginal utility of consumption, u′′(xfi,t).
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From equation (56), we also define the marginal value of the public funds financed by
agent (i, f):

ψ̂fi,t := µt − ψfi,t (57)

This is the net value for the planner of transferring one unit of resources to its budget
from an agent (i, f) .With this notation, the FOCs of the planner are easily interpreted.
First, for an unconstrained agent (i, f), the planner implements a public-funds smoothing
condition:

ψ̂fi,t = βEt[(1 + rt+1)ψ̂fi,t+1], (58)

where because of the assumption of MIT shocks, the expectation is taken with respect to
the idiosyncratic risk. Equation (58) is a generalized version of the Euler equation (10) (and
is actually the same equation when all Lagrange multipliers are zero and all weights are set
to 1), in which the planner internalizes through ψ̂fi,t the general equilibrium externalities
when setting individual savings. For credit-constrained agents, we have λfi,t = 0, and the
Euler equation is not a constraint.

Here we present FOCs related to the fiscal tools. The FOC with respect to public debt
can be written as

µt = β(1 + r̃t+1)µt+1 (59)

without an expectation operator because of the MIT shock assumption. Equation (59)
shows that the planner aims at smoothing the shadow cost of the government budget
constraint through time. This yields the modified golden rule at the steady state, as
previously discussed.

The other FOC with respect to the post-tax interest rate captures the effect of a change
in the capital tax:

F∑
f=1

mf

ˆ
i

ψ̂fi,ta
f
i,t−1`

f (di)
︸ ︷︷ ︸

Net distributive gain

=
F∑
f=1

mf

ˆ
i

λfi,t−1u
′(xfi,t)`f (di).︸ ︷︷ ︸

Cost on savings incentives

(60)

A change in the capital tax generates benefits for the government through the taxation of
heterogeneous households. Because the capital tax is levied on agents’ asset holdings, the
benefits are proportional to their beginning-of-period wealth, which is the net distributive
effect (which is the term at the left-hand side (LHS)). These benefits are set equal to the
costs, which operate through the savings incentives. From the planner’s perspective, these
costs depend on the Lagrange multiplier λfi,t−1 on the Euler equation of each agent (term
at the right-hand side (RHS)).
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The FOC capturing the effect of a change in the labor supply lt is:

1 + 1/ϕ
χτ̃t

l
1/ϕ+1
t

F∑
f=1

mf

ˆ
i

ψ̂fi,t(y
f
i,t)τ̃t`(di)`f (di)︸ ︷︷ ︸

Net welfare effect

= (61)

µt

 F∑
f=1

mf

ˆ
i

 l1/ϕ+1
t

χ
(yfi,t)τ̃t − (yfi,t)

1/ϕ+1+τ̃t
1/ϕ+1 FL,tlt

 `f (di)


︸ ︷︷ ︸
.

Reduction in goverment income

(62)

As in FOC (60), the benefit of setting the labor tax level consists in public-funds transfers
weighted by the tax base, which here is the labor supply, equal to 1

χτ̃t
l
1/ϕ+1
t (yfi,t)τ̃t , for each

agent (LHS). The cost is related to the modification of labor supply incentives that are
affected by labor tax (RHS).

The FOC for the progressivity coefficient τ̃t has a similar interpretation:

0 = l
1+1/ϕ
t

χτ̃t

F∑
f=1

mf

ˆ
i

ψ̂fi,t(y
f
i,t)τ̃t

(
− 1
τ̃t

+ log yfj,t
)
`(di)

︸ ︷︷ ︸
Net distributive gain

(63)

− µt
lt

1/ϕ+ 1

 F∑
f=1

mf

ˆ
i

log yfj,t

 l1/ϕt

χ
(yfi,t)τ̃t − (yfi,t)

1/ϕ+1+τ̃t
1/ϕ+1 FL,t

 `(di)
 .

︸ ︷︷ ︸
Cost on labor supply incentives

Setting the progressivity of the labor tax is very similar to setting its level. Indeed, on the
one hand, benefits are public-funds transfers weighted by the tax base. On the other hand,
the costs are related to the modification of labor supply incentives. However, even though
setting the average tax level or the progressivity (coefficient τt) has similar effects, they
are two independent instruments because they affect the distribution of agents differently.

4.2 Inverse Optimal Approach at the Steady State

A quantitative simulation of the model requires taking a stand on the SWF, which is
determined by the social weights (ωf)f=1,...,F . Indeed, our goal is to study the dynamics
around a quantitatively relevant steady-state fiscal system. This is typically not the case
when the steady state corresponds to a utilitarian planner with a standard calibration.
To overcome this difficulty, we implement an inverse optimal approach (Bourguignon and
Amadeo, 2015; Chang et al., 2018; Heathcote and Tsujiyama, 2021), allowing us to estimate
the weights of the SWF. The inverse optimal approach consist in identifying the objective
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of the planner, for which an observed competitive equilibrium (i.e., observed allocation
and instrument values) is socially optimal. More precisely, we calibrate the parameters
of the model to obtain a realistic steady-state allocation given fiscal parameters set to
match the actual US fiscal policy. Second, we find the values of the social welfare weights
(ωf )f=1,...,F , such that the chosen fiscal parameters are actually optimal for the planner at
the steady state, and are a solution of an SRE. Once the social weights have been obtained,
we can use this steady-state allocation to implement public spending shocks (with different
persistences) to observe the responses of fiscal instruments. As these shocks are transitory,
we can check that the value of the fiscal tools return to their initial values, which are the
optimal ones in the long run. Overall, the FOCs of the planner are used twice: (i) at the
steady state, to estimate the weights of the SWF from the actual fiscal system; (ii) in the
dynamics to compute the optimal response of instruments given the estimated weights.

How many SWF weights can be identified from the steady-state FOCs of the planner?
Fiscal policy is composed of four instruments (τK , B, κ, τ), but these four instruments
actually impose only two constraints on social weights. Indeed, fiscal policy is constrained by
the budget constraint of the government, which removes one degree of freedom. Moreover,
the public debt FOC (59) imposes a steady-state value on the before-tax real interest rate
1+ r̃ = 1/β, but does not restrict the social weights. As the social weights are unique up to
an increasing transformation, we further impose without loss of generality that the weights
sum up to 1: ∑F

f=1 m
fωf = 1. Given this normalization and the two FOC constraints,

F = 3 different types of agents are needed to exactly identify the SWF weights from the
FOCs of the planner. We will thus consider F = 3 in our quantitative exercise of Section
5.24

4.3 Consistency with the Analytical Model

After constructing the SRE using the inverse optimal approach, it can be checked that
the conditions identified in the discussion of Proposition 2 are satisfied in the general
model. First, the social weights ωf are constructed so that the planner’s FOCs hold. In
this SRE we can check that the Lagrange multiplier of the government’s budget is positive
and that the Straub-Werning condition holds. Second, since the government’s budget
constraint holds with an interior fiscal policy, the Laffer condition is satisfied. Third, we
also verify that the total return on the capital is not sufficiently large to finance public

24Considering F > 3 types is possible, at the cost of additional restrictions, such a the minimal deviation
to the Utilitarian SWF. This is done in Section 5.4 below.
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spending, and therefore that a first-best equilibrium cannot exist for the calibration under
consideration. These three conditions correspond to those listed in Proposition 2 about
the equilibrium. Furthermore, since the calibration implies a positive public debt, the
condition in Proposition 5 also holds. Finally, when we simulate the dynamics of the model,
we check that the Blanchard-Kahn condition holds for the truncated model, similarly
to the condition in Proposition 4. These checks make us confident that we consider the
perturbation of a relevant SRE.

Identifying the price externality. A result of the analytical model, and of Proposition
1, is that externalities of savings and labor choices on prices are key to pin down the
optimal fiscal system. In the resolution of the general model (see Section 4.1), we rely on
the Lagrangian approach to compute the planner’s FOCs. We verify in Appendix F.2.1 that
the FOCs derived with the Lagrangian or the primal approaches are identical, even though
the Ramsey problems are solved differently.25 With this approach, the price externality is
captured by the Lagrange multipliers λi,t indicating whether agent i is saving too much or
too little from a social perspective. In the absence of price externalities, agents’ private
savings decisions would also be socially optimal and λi,t = 0 for all agents i (i.e., the Euler
equation would not be a constraint for the planner but a redundant optimality condition).
As in the analytical model, the absence of price externalities implies a zero optimal capital
tax. Indeed, when λi,t = 0 for all agents i, equation (56) then implies that ψfi,t = ωfu′(xfi,t),
which, for unconstrained agents, yields with equation (58):

µt − ωfu′(xfi,t) = βEtRt+1
(
µt+1 − ωfu′(xfi,t+1)

)
.

This simplifies into µt = βRt+1µt+1 using the Euler equation of agent i and the MIT shock
assumption. Equation (59) then implies that pre- and post-tax rates are equal to each
other: 1 + r̃t = Rt, which means a zero-capital tax: τKt = 0. Obviously, no stationary
equilibrium would exist in that case. Indeed, savings would diverge and marginal utilities
would tend to 0, implying a non-stationary equilibrium (see Chamberlain and Wilson,
2000).

Furthermore, we can prove that a positive capital tax comes with binding credit
constraints at the steady state, as is the case in the simple model. Indeed, integrating the

25Additionally, in Appendix F.2.2, we check that the solution of the analytical approach is quantitatively
similar to the limit of the solution of the general approach when the transition matrix converges to the
anti-diagonal matrix of Assumption A (see Figure 5 in Appendix).
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Euler equations (53) of all agents yields, at the steady state:

τK =
∑F
f=1m

f
´
i
νfi `

f (di)
(1− β)∑F

f=1m
f
´
i
u′(xfi )`f (di)

, (64)

where νfi ≥ 0 is the Lagrange multiplier on an individual’s credit constraint. Equation (64)
shows that τK > 0 when a positive mass of agents having face a binding credit constraint
at the steady state. As a consequence, having credit constraints that occasionally bind is
a necessary condition for a positive optimal capital tax in an SRE.

4.4 Time-Inconsistency: Time-0 and Timeless Perspectives

In this general model, optimal policies are time inconsistent. This can be seen in the
planner’s FOCs, where past values of Lagrange multipliers λfi,t−1 appear (see equations
(56) used in (58)). In period 0, these Lagrange multipliers are typically initialized to
zero. This means that in period 0, even in the absence of any shock, the planner is not
bound by any past commitments. Obviously, this differs from the steady state, where past
commitments matter (and past Lagrange multiplier values differ from zero). Thus, the
planner has different incentives in period 0 than in the steady state and therefore deviates
from the steady-state allocation. This is called a reoptimization shock and involves the
time inconsistency of the planner’s program in period 0.26 Since we do not want our results
to be affected by this effect, we neutralize the time inconsistency by setting the values of
the Lagrange multipliers in period −1 to their steady-state values. This means that the
planner faces the same commitments as in the steady state and it removes their incentives
to deviate. In this case, in the absence of a shock, the economy optimally remains at its
steady-state equilibrium.27

4.5 Numerical Tools

We solve the model using the tools of LeGrand and Ragot (2022a). This so-called truncation
method generates a large but finite state space, allowing one to easily estimate the weights

26We study this time inconsistency and the reoptimization shock in LeGrand and Ragot (2023). A
reoptimization shock (i.e., setting the Lagrange multipliers to 0 in period 0) generates a transitory
dynamics even in the absence of external shock. In the case of the first-order perturbation, we check
that for any variable, adding the IRF of a pure reoptimization shock to the IRF of a shock on G in a
timeless perspective (i.e., with no reoptimization) exactly generates the IRF of a shock on G in the time-0
perspective (i.e., with a shock on G plus a reoptimization shock).

27An additional benefit of this procedure is that the implied IRFs can be thought as the IRFs of a
model with aggregate risk, where we take a first-order approximation of the model for the aggregate risk.
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of the SWF and simulate the dynamics of the model. LeGrand and Ragot (2022b) propose
a refinement of the truncation method, which we improve in this paper to allow for a
refined truncation with an arbitrarily large number of different productivity levels. The
formal algebra is detailed in Appendix G.

The truncation method can be summarized as follows. It consists of aggregating the
model according to agents’ recent idiosyncratic histories, and then expressing the model
in terms of these groups of agents rather than individual agents. Indeed, in heterogeneous-
agent models, agents differ according to their idiosyncratic histories. An agent i has a
period-t history (yi,0, . . . , yi,t). Let h = (ỹ−N+1, . . . , ỹ−1, ỹ0) be a given history of length N .
In period t, an agent i is said to have truncated history h if the history of this agent for
the last N periods is equal to h: (yi,t−n+1, . . . , yi,t) = (ỹ−N+1, . . . , ỹ−1, ỹ0). The truncation
method then consists of constructing a model based on these truncated histories, which
serve as representative agents. The difficulty in the aggregation is that the steady state of
the Bewley model features a distribution of agents within each truncated history (according
to the history of agents prior to period t−N). It can be shown that this within-history
heterogeneity can be captured by history-specific parameters (denoted by “ξs”). The
truncation method assumes that this within-history heterogeneity is time-invariant and
thereby allows the simulation of the dynamics.28

The previous truncation method considers truncated histories of equal length. This
provides simplicity but at the cost of considering many histories, some of which are very
unlikely to be experienced by agents. LeGrand and Ragot (2022b) proposed to consider
different truncation lengths for different histories; for clarity, we call this method refined
truncation and the former one uniform truncation. Histories that are more likely to be
experienced (i.e., larger histories) can be “refined”, i.e., that they can be replaced by a set
of histories with a higher truncation length. For instance, the truncated history (y1, y1)
can be refined into {(y, y1, y1) : y ∈ Y}, where the group of agents who have been in
productivity y1 for two consecutive periods is divided into Card(Y) truncated histories,
depending on their productivity status 3 periods ago. The construction is recursive because
the set {(y, y1, y1) : y ∈ Y} contains the truncated history (y1, y1, y1) that can refined
in a similar way. An advantage of this construction is that the number of histories is a
linear function of the maximum truncation length, instead of an exponential function. A

28Considering wealth bins is not possible because the savings function and thus the transitions across
wealth bins are endogenous to the planner’s policy. This would imply a fixed point that would be very
hard to solve. LeGrand and Ragot (2022a) showed that the truncated allocation converges to the true one
when the truncation length increases. The question of the truncation length is then quantitative, and
LeGrand and Ragot (2023) showed that a tractable truncation length provides accurate results.

37



difficulty of the construction is that the set of refined histories must form a well-defined
partition of the set of idiosyncratic histories in each period. The construction of the
refinements is presented in Appendix G.1. One can check the accuracy of the refined
truncation, simulating economies where other solution techniques can be used. This is
done in Section H, where we use Reiter’s (2009) method as a benchmark.

5 Numerical Analysis

5.1 Calibration

Preferences. The period is a quarter. The discount factor (together with the technology
parameters) is set to match an annual capital-to-output ratio of 2.7, a standard US
estimate. For the log-GHH autility function (32), we set a Frisch elasticity of the labor
supply of ϕ = 0.5, which is the value recommended by Chetty et al. (2011) for the intensive
margin in heterogeneous-agent models. The scaling parameter is set to χ = 0.05 to obtain
a steady-state labor supply of roughly 1/3.

Ex-ante types of agents. As explained in Section 4.2, we consider three types of agents
that differ ex-ante. Each type of agent is endowed with its own productivity process. The
three types will enable the model to replicate at the steady state the actual fiscal policy of
the US.

Productivity and idiosyncratic risk. We first use data on US educational attainment
to determine the average productivity levels. We set the relative average productivity levels
based on the average annual earnings of three groups of workers: those with a high-school
degree or less, those with some college education and no college degree or associate degree,
and those with at least a bachelor’s degree. This leads us to set the relative average
productivity levels of the three types to 0.8, 1 and 2, and their corresponding population
shares to 1/3 for each type.29 Type 1 is the type with the lowest average productivity,
while Type 3 corresponds to the highest average productivity.

For the labor market process for each type of agents,we follow the strategy of Castaeneda
et al. (2003), which is to fit realistic processes based on targeted moments. First, we
focus on standard AR(1) processes for each type f : log yft = ρfy log yft−1 + εft , where

29Using the 2022 Current Population Survey, the three groups each represent roughly 1/3 of the US
labor force, and have average annual incomes of $24400, $31000 and $71000 respectively.
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εft
iid∼ N (0, (σfy )2). Second, we perform a grid search to minimize the distance between

the three processes, while imposing the following constraints: i) consistent with US data
(see LeGrand and Ragot, 2018), the agents with the lowest average income face a higher
income risk, ii) we target a realistic debt-to-GDP ratio given the chosen fiscal system,
and iii) all social weights must be positive. We impose this last constraint to obtain a
sensible SWF (in which the planner positively cares for all agents’ types). The resulting
parameters are gathered in Table 1.

Type 1 Type 2 Type 3

persistence ρy 0.986 0.98 0.98
Variance σy 0.16 0.132 0.132

Average productivity 0.8 1.0 2.0

Table 1: Model calibration: targets and model counterparts.

Finally, we discretize each productivity process using the Rouwenhorst (1995) procedure
considering five idiosyncratic states for each process. We thus have 5× 3 = 15 productivity
levels in the economy.

Technology. The production function is Cobb–Douglas: F (K,L) = KαL1−α− δK. The
capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al.
(2018) among others.

Taxes and government budget constraint. The capital tax is taken from Trabandt
and Uhlig (2011), who used the methodology of Mendoza et al. (1994) on public finance
data prior to 2008. Their estimation for the US in 2007 (before the financial crisis) yields
a capital tax (including both personal and corporate taxes) of τK = 36%. For labor, we
consider the HSV functional form from equation (2). The progressivity of the labor tax is
taken from Heathcote et al. (2017), who reported an estimate of τ = 0.18. We choose κ to
match a public-spending-to-GDP ratio of 17%, as in Heathcote and Tsujiyama (2021).

Table 2 summarizes the model parameters.

5.2 Simulation, Truncation and Estimating SWF Weights

To construct the finite state-space representation, we first use a uniform truncation length
of N = 2 for each agent, thus generating 152 = 225 histories. Second, we refine the 15
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Parameter Description Value

Preference and technology

β Discount factor 0.992
α Capital share 0.36
δ Depreciation rate 2.5%
ā Credit limit 0
χ Scaling param. labor supply 0.05
ϕ Frisch elasticity labor supply 0.5

Tax system

τK Capital tax 36%
κ Scaling of labor tax 0.75
τ Progressivity of tax 18%

B/Y Public debt 61%
G/Y Public consumption 17%

Table 2: Parameter values in the baseline calibration. See the text for descriptions and
targets.

most common histories with a truncation length of 10. This means that the total number
of histories is 455. This representation provides an accurate simulation of the dynamics,
as shown in Appendix H, where we compare the dynamics of the economy simulated with
the truncation and the Reiter methods, after a public spending shock for exogenous fiscal
rules.

In Appendix G, we provide a detailed account of the computational implementation,
which is of independent interest because solving such Ramsey problems is not straightfor-
ward. To summarize, the truncation method provides a finite state-space representation,
which is used to compute steady-state Lagrange multipliers λh and social value of liquidity
ψh for all histories h = 1, . . . , 455. We then use the method of Section 4.2 to compute the
social weights. Because of the two restrictions imposed by the planner’s FOCs and the
normalization condition, the computation of the SWF weights boils down to the inversion
of a 3 × 3 matrix. The three social weights are found to be: ω1 = 13.1%, ω2 = 81.6%
and ω3 = 5.3%. They are positive and sum to 100% by normalization. We recall that by
construction, the chosen fiscal system is optimal for the planner at the steady-state.30

30We have checked that the social weights move intuitively as a function of the steady-state allocation.
For instance, decreasing τ from 0.18 to 0.10 (recall that τ = 0 is a linear fiscal system) and increasing
κ to 0.76 to balance the government budget increases the social weight of the most productive agents
(ω1 = 5.64%, ω2 = 0.70% and ω3 = 0.24%). We also checked that increasing the truncation length did not
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5.3 Model Dynamics

We now simulate the optimal dynamics of the four fiscal tools (τKt , Bt, κt, τt)t≥0 after a
public spending shock occurring in period t = 0. After an initial shock denoted ε0 in
period 0, public spending reverts back to its equilibrium value at rate ρG. The dynamics
of public spending are: G0 = (1 + ε0)Gss and Gt = (1− ρG)Gss + ρGGt−1.

Dynamics of the instruments as a function persistence. We simulate the model
for two values of the persistence of public spending shocks. The higher value, ρG = 0.99,
corresponds to a very persistent shock. The lower value is ρG = 0.1 and corresponds to
a transitory shock. The initial size of the shock is adjusted so that the NPV of public
spending is the same in the two economies. Results are plotted in Figure 1, which reports
the public spending shock G, the Lagrange multiplier µ, and optimal public debt B in
proportional deviations, and the labor tax level κ, the labor tax progressivity τ , and the
capital tax τ k in level deviations. The high-persistence economy is plotted with blue
dashed lines, while the low-persistent one is plotted with black solid lines. The thin red
dashed line indicates the zero value (i.e., the steady-state value).

Panel 1 presents the dynamics of public spending, G, which increases by 1% of GDP
when ρG = 0.1 (black solid line) and by 0.02% of GDP when ρG = 0.97 (blue dashed line).
These two different date-0 increases are calculated so that the NPV of public spending
is the same in both economies. Panel 6 plots the value of the Lagrange multiplier µ (in
proportional deviations), which represents the marginal value of additional public resources.
Panels 2–4 report the level of the labor tax, κ, the progressivity of the labor tax, τ , and
the capital tax τ k (in level deviations). Recall that the tax schedule (2) is such that the
post-tax wage is wt = κt(w̃t)1−τt . Therefore, an increase in κ (panel 2) corresponds to a
decrease in the labor tax (as agents receive more labor income), while an increase in τ
(panel 3) implies a more progressive labor tax.

First, after the public spending shock, the capital tax increases (panel 4), and the
planner reduces the labor tax (panel 2) and increases its progressivity (panel 3) to reduce
income inequality. Note that the change in the capital tax (panel 4) is an order of
magnitude larger than the change in the labor tax. Moreover, the higher the persistence,
the smaller the change in these variables. However, the variation of taxes at impact as
a function of persistence is much lower than the variation in public spending. Indeed,
while the tax paths are quite similar for the two persistence levels, the changes in the

significantly change the weights.
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Figure 1: Dynamics of selected variables for two shocks with different persistences and
the same NPV. G—public spending; µ—value of public resources; κ—level of labor tax;
τ—progressivity of labor tax; τ k—capital tax; B—public debt. The black solid lines
correspond to persistence ρG = 0.1, and the blue dashed lines correspond to persistence
ρG = 0.99. G is in percent of GDP, B is in proportional deviations, and other variables
are in level deviations.

public debt path (panel 5) are quite different. Public debt increases when the persistence
is low, making it easier to finance the sharp increase in public spending in the early
periods. In contrast, public debt decreases when the persistence is high, as the cost of the
additional public spending is front-loaded. These responses of the public debt explain why
the variations in the tax responses, functions of the persistence of the public spending
shock, are not commensurate with the variations in the date-0 shock.

To summarize, in both cases (high and low persistence), the planner implements a
significant increase in capital taxes for a few quarters. Labor taxes move much less, with
a small decrease in the overall level and a small increase in progressivity. Public debt
shows much more persistent deviations than other variables do. Moreover, it can either
fall or rise depending on the persistence of the public spending shock. This confirms the
robustness of our theoretical result in Section 3.3, in a quantitatively relevant setting.

42



Allocation and comparison with the first-best outcome. We now compare the
outcomes of the incomplete market model to those of the first-best allocation. The first-best
allocation is computed in the complete market economy, in which the planner maximizes
aggregate welfare subject only to the resource constraint. The first-best allocation implicitly
assumes that the planner has access to productivity-contingent lump-sum taxes, as in the
standard real business-cycle model. The weights of the SWF do not affect the dynamics
of aggregate quantities in this case, but only the intra-period allocation.

We compare the incomplete market allocation to the first-best one both in terms of
aggregate quantities and in terms of per-period welfare expressed in equivalent consumption.
The latter is computed as follows. For each type of agent f = 1, 2, 3, there are Ntot histories
indexed by h. We denote by cfh,t and l

f
h,t the consumption and labor supply of agents with

history h of type f in period t. Their period welfare, Wt, can be computed as follows:

Wt =
3∑

f=1
ωfmf

Ntot∑
h=1

Sfhξ
f
0,hu

(
cfh,t −

1
χ

(lfh,t)
1+ 1

ϕ

1 + 1
ϕ

)
,

where Sfh is the share of the population of type f with history h and the parameter ξf0,h
captures the steady-state heterogeneity within history h of type f . More precisely, ξf0,h
ensures that the steady-state period utility of each history is equal to the utility derived

from steady-state consumption cf,ssh and labor supply lf,ssh : ξ0u(cf,ssh ∆t − 1
χ

(lf,ssh )1+ 1
ϕ

1+ 1
ϕ

) is
exactly the steady-state utility of agents with history h of type f in the full model. Using
these elements, we can then compute the per-period equivalent consumption, ∆t, defined
as the increase in the steady-state consumption of all agents at time t that makes each
agent’s period welfare identical to the period welfare Wt. Formally:

3∑
f=1

ωfmf
Ntot∑
h=1

Sfhξ
f
0,hu

(
cf,ssh ∆t −

1
χ

(
lf,ssh

)1+ 1
ϕ

1 + 1
ϕ

)
= Wt.

For the first-best case, the calculation is similar except that there is only one agent (hence
one type and one history).

The results are plotted in Figure 2, where we report output Y , capital K, aggregate
labor supply L, aggregate consumption C, and welfare (in equivalent consumption as
explained above) after a public spending shock. Panel A reports results for the low-
persistence case (ρG = 0.1), and panel B reports results for the high-persistence case
(ρG = 0.99). The public spending shock is shown in panel 1 of Figure 8 for the two
persistence values. In both panels of Figure 2, the solid line corresponds to the incomplete
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market model (IM) and the dashed line to the first-best allocation (FB). The two economies
experience the same public spending shock, which differs only in its persistence.

A. High persistence ρG = 0.99

B. Low persistence ρG = 0.1

Figure 2: Output Y , capital K, labor L, consumption C, and period aggregate welfare (in
equivalent consumption) for low and high persistence values, in proportional deviations.
The solid line is the incomplete market model (IM) and the dashed line the first-best
allocation (FB). The shock is a public spending shock (panel 1 of Figure 8) and only differs
in persistence.

Consumption and the capital stock fall in all cases, but much more so when persistence
is low (due to the larger shock at impact). Total labor supply increases at impact (due to
a decrease in labor taxes). It can be observed that the volatility and the persistence of the
aggregate variables in the incomplete-market economy are higher than in the first-best
economy, for both low and high persistence values, although the dynamics of the variables
are qualitatively similar.31 The relative discrepancy between the two economies is greater
in the case of high persistence case than in the case of low persistence. Finally, and
unsurprisingly, the decline in welfare is significantly more pronounced in the incomplete-
market economy than in the first-best economy. Moreover, the welfare gap between the

31It is also possible to compute the dynamics of the allocation with complete markets (representative-
agent case) but with distorting taxes. It is known (from Chari et al., 1994, Chari and Kehoe, 1999, and
Farhi, 2010, among others) that the optimal steady-state outcome features (i) a null capital tax, (ii) a
government that holds the whole capital stock (public debt thus being negative), and (iii) a labor tax
set to finance the share of public spending that is not financed by interest payment on the capital stock.
After a public spending shock, public debt follows the capital stock. Because this outcome is very different
from the incomplete-market economy (where steady-state public debt is positive), we do not report the
simulation of this economy.
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two economies decreases faster in the low persistence case than in the high persistence
case.

Optimal path of public debt and persistence of the shock. As we saw in Section
3.3, and as confirmed by the quantitative analysis reported in panel 5 of Figure 1, the
response of the public debt differs markedly with the persistence of the shock. We explore
this aspect further here by reporting the optimal debt dynamics for four different levels of
persistence of the public spending shock. This is done in Figure 3, where in each case the
initial shock G0 is normalized to produce the same NPV of public spending. The paths of
other instruments or other aggregate quantities are similar to those presented in Figure 1
and are therefore not reported here.

We observe that the response of the public debt at impact decreases with persistence.
When the persistence is small (ρG = 0.1), public debt on impact first increases and then
decreases monotonically. The response at impact decreases monotonically with persistence.
The shape of the response also changes. For higher persistence (ρG = 0.8), the path of
public debt has an inverted U shape that then becomes J-shaped at higher persistence
(ρG = 0.95).

The takeaway from this graph is that the persistence of the public spending shock is a
key driver of the optimal financing structure of the shock. The higher the persistence, the
more the financing should rely on taxes and the less on public debt.

Figure 3: Comparison of optimal public debt dynamics for different persistence values of the
public shock (same NPV of public spending), in proportional deviation from steady-state
value of public debt.
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5.4 Robustness in Other Environments and Other Shocks

We check the robustness of the result concerning the optimal response of public debt in
two other environments.

5.4.1 Alternative Fiscal System

Our benchmark tax system features a non-linear HSV labor tax. However, this is not the
only way in the literature to reproduce the progressivity of the US fiscal system. Another
possibility is to consider an affine tax system, in which the linear labor tax is complemented
by a lump-sum transfer Tt. This is the case, for instance in Dyrda and Pedroni (2022).
We present the model specification and the solution of the Ramsey program in Appendix
I. We verify that our main result remains robust to this new fiscal system. We find that
public debt increases when persistence is low but decreases when persistence is high. In
addition, similarly to the quantitative results in Figure 1, both the tax progressivity and
the capital tax increase at impact. Overall, the optimal response of the fiscal system
remains robust to the specification of the tax system.

5.4.2 Alternative SWF

The benchmark SWF assigns social weights that depend on the ex-ante type of agents.
The ex-ante types were fixed once and for all, and implied different productivity processes
among agents. We then used these weights to implement an inverse optimal taxation
approach: the weights were calibrated for the actual US tax system to be optimal at the
steady state. Here we consider an alternative SWF, where the weights are productivity
dependent. We assume that agents can draw their current level of productivity within a
given finite set and the planner then assigns a social welfare weight, ω(y), to each level of
productivity, y. The instantaneous utility of agents with productivity level y in the current
period is weighted by ω(y). Even if the weights are set once and for all, a given agent may
experience different weights depending on their current productivity level. Formally, the
planner’s SWF is:

∞∑
t=0

βt
ˆ
i

ω(yi,t)(u(ci,t)− v(li,t))`(di), (65)

where we remove ex-ante heterogeneity. In fact, this formulation of social welfare weights
does not require ex-ante heterogeneity, since it only involves within-period heterogeneity.
The advantage of the representation (65), is that the planner may have a preference for
within-period redistribution, since the weights depend on productivity, which may be an
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attractive feature. This SWF is used in LeGrand et al. (2022), Dávila and Schaab (2022)
and McKay and Wolf (2023). This representation also allows considering a separable
utility function, which is CRRA for consumption. However, these weights are not strictly
speaking social weights, since they weight instantaneous utility but not intertemporal
welfare.

The model specification and results are provided in Appendix J. Again, we check that
the results are qualitatively similar to those of the baseline model.

5.4.3 Other Shocks

The dynamics of the model with other shocks can be simulated using the same approach as
in Section 5.2. In fact, once the Ramsey steady state has been characterized, the method
for simulating the dynamics of the model is very versatile and can be easily adapted to
different shocks. We illustrate this here by considering a TFP shock and a discount factor
shock that complements the aforementioned public spending shock.

Regarding the TFP shock, we assume that the production function is Yt = F (Kt−1, Lt) =
ZtK

α
t−1L

1−α
t − δKt−1, where Zt is the TFP, equal to 1 in the steady-state. Public spending

is constant. After an initial (small) shock ε0, TFP returns to its equilibrium value at a rate
ρZ ∈ [0, 1). The dynamics of TFP is therefore: Z0 = 1− ε0 and Zt = 1− ρZ + ρZZt−1, for
t ≥ 1. We then simulate the dynamics of the model for different values of the persistence
ρZ . As in the case of the public spending shock, we adjust the size of the initial shock ε0,
so that the cumulative fall in TFP is constant over the different values of ρZ . For the sake
of brevity, the optimal dynamics of public debt for the different values of ρZ can be found
in Appendix K. The results are very similar to those in Figure 3. When the TFP shock
is not persistent, the public debt increases on impact, while it decreases when it is very
persistent. The intuition behind this result is as follows. An increase in public spending
is a reduction in the resources available for consumption (even if it increases the level of
welfare), which is known to be very similar to a fall in TFP. In both cases, the planner
must raise additional resources, either because spending increases or because the tax bases
shrink.

Regarding the discount factor shock, the discount factor shared by agents and the
planner is time-varying, while public spending and TFP remain constant. Formally,
the path of the discount factor, denoted (βt)t≥0, is defined as β0 = β + ε0 and βt =
(1− ρβ)β + ρββt−1, for t ≥ 1. The initial shock is ε0 and the persistence ρβ ∈ [0, 1), while
β is the steady-state value of the discount factor set using the baseline calibration. Again,

47



we consider the public debt response for different values of the persistence ρβ and the
initial shock is normalized so that the average variation in the discount factor is constant
across the different persistence values. The results can be found in Appendix K. We
find that the dynamics of the public debt is different compared to the cases of the TFP
and public spending shocks. Since agents are temporarily more patient, the capital stock
increases and this increase is more persistent than the discount factor shock. This allows
the planner to reduce the public debt. When the persistence is very high, public debt may
even increase slightly on impact, since the high persistence implies a large and sustained
increase in savings.

6 Conclusion

We have studied the optimal fiscal policy after a public spending shock in a heterogeneous-
agent model. Our first contribution is to clarify, in a simple environment, the conditions for
the existence of steady-state equilibria that feature positive optimal capital taxation and
public debt. The key friction for the existence of an equilibrium is an occasionally binding
credit constraint, which provides a rationale for maintaining both a positive capital tax
and positive public debt. This friction is necessary but not sufficient for the existence
of the equilibrium. Obtaining a positive optimal capital tax depends on the shape of
the utility function; it occurs generally for DRRA or GHH utility functions, for instance.
A second result is to show that the optimal dynamics of public debt and taxes depend
crucially on the persistence of the public spending shock: public debt is procyclical for low
persistence but countercyclical for high persistence. We show that these results still hold
in a general model where we solve for optimal fiscal policy after an MIT shock. In this
model, the actual US tax system is optimally implemented at the steady state, thanks
to an inverse optimal taxation approach. We find that public debt can either increase or
decrease on impact depending of the persistence of public spending or TFP shocks.
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Appendix

A Proof of Proposition 1

When credit constraints are binding, the simplest solution to compute the planner’s FOCs
is to use the primal approach. These FOCs can also be derived using either the factorization
approach or the Lagrangian approach, as explained in Section 4.1. See Appendix F.2.1
below for the derivation. The Lagrangian associated to the program (17)–(18) can be
written as:

max
(ce,t,le,t,cu,t,ae,t,Bt)t

∞∑
t=0
βt
(
U(ce,t, le,t)+U(cu,t, 0)−λe,t(wtle,t−(ae,t + ce,t))−λu,t(Rtae,t−1−cu,t)

−µt(ce,t + cu,t +Gt + ae,t −Bt − ae,t−1 +Bt−1 − F (ae,t−1 −Bt−1, le,t))
)
, (66)

s.t. wt = −Ul(ce,t, le,t)
Uc(ce,t, le,t)

, (67)

Rt+1 = Uc(ce,t, le,t)
βUc(cu,t+1, 0) , (68)

ce,t, cu,t > 0, ae,t, le,t ≥ 0, (69)

where, to simplify expressions, we consider the prices as functions of allocations: wt :=
wt(le,t, ce,t) and Rt+1 := Rt+1(le,t, ce,t, cu,t+1), and we will thus write partial derivatives,
such as ∂ logwt

∂ce,t
. These derivatives reflect the externalities of allocation choices on prices that

are internalized by the planner. The quantities λe,t and λu,t are the Lagrange multiplier
associated to the resource constraints of employed and unemployed, respectively. We follow
Ljungqvist and Sargent (2018) in this formulation of the primal approach (see below for a
lengthier discussion).32

The FOCs of the planner with respect to Bt and ae,t imply:

µt = β(1 + FK,t+1)µt+1, (70)

λe,t = βRt+1λu,t+1. (71)

The FOC (70) means that the planner smooths out the shadow cost of its budget constraint.
Relaxing it today by one unit implies constraining it tomorrow by 1 + FK,t+1, which is the

32In particular, a positive λe,t or λu,t does not imply that relaxing the agent’s budget constraint
negatively affects welfare, as the actual Lagrange multipliers on agents’ budget constraints are µt − λe,t
and µt − λu,t, which are always positive.
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cost of public debt. This equation at the steady state implies the modified golden rule
stating that the planner chooses the long-run level of public debt so as to equalize the
marginal productivity of capital and discount rate. The FOC (71) states that relaxing the
employed budget constraint in the current period implies constraining the unemployed
budget constraint in the next period. The shadow costs of budget constraints are discounted
as the Euler equation, with the discount factor βRt+1.

The FOCs with respect to ce,t, cu,t, and le,t are respectively:

0 = Uc,e,t − µt − λe,t
(
∂ logwt
∂ce,t

wtle,t − 1
)
− βλu,t+1

∂ logRt+1

∂ce,t
Rt+1ae,t, (72)

0 = Uc,u,t − µt − λu,t
(
∂ logRt

∂cu,t
Rtae,t−1 − 1

)
, (73)

0 = Ul,e,t + µtFL,t − λe,t
(
wt + ∂ logwt

∂le,t
wtle,t

)
− βλu,t+1

∂ logRt+1

∂le,t
Rt+1ae,t, (74)

where Uc,e,t := ∂U(ce,t,le,t)
∂ce,t

and similarly for other notation. Multiplying (73) at date t+ 1
by βRt+1 and subtracting (72) yields using (68), (70) and (71):

µt − βRt+1µt+1 = β(1 + FK,t+1 −Rt+1)µt+1 = βτKt+1r̃
K
t+1µt+1 = (75)

λe,t

(
cu,t+1

∂ logRt+1

∂cu,t+1
− cu,t+1

Rt+1

∂ logRt+1

∂ce,t
− wtle,t

∂ logwt
∂ce,t

)
,

which can be interpreted as the planner setting jointly consumption levels of employed
and unemployed in a way that is similar to an increase in the savings of employed agents
at date t. The consumption of employed agents at t decreases by one unit, while the
consumption of unemployed at t+ 1 increases by Rt+1 units. Equation (75) sets equal the
benefit in terms of resources (proportional to the Lagrange multiplier µ) of the to its social
cost (proportional to the shadow cost of individual budget constraint λe). Decreasing the
consumption of employed agents at t by one unit has a benefit µt (or β(1 + FK,t+1)µt+1

from (70)) for resources, while increasing the consumption of unemployed at t+ 1 by Rt+1

units has a today’s cost of βµt+1 per unit. The net benefit at the left hand side of (75)
is thus proportional to 1 + FK,t+1 −Rt+1, which is itself proportional to the capital tax.
This comes at no surprise: increasing savings raises the capital tax base, which makes
the resource benefit proportional to the capital tax. The latter reflects the smoothing
wedge due to the difference in discount rate between the planner and agents. Ideally, the
planner would like to raise savings up to the point where the marginal benefit is null and
the benefit maximal. It does not do so because raising savings also involves a cost.
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The cost, at the right hand side of (75), is due to the (price) externalities of savings on
wages and interest rates. Indeed, there is no direct effect, because the planner chooses a
savings level consistent with the Euler equation (68) and the envelope theorem applies.
The magnitude of the price externality is controlled by the Lagrange multiplier λe,t, while
the externality itself is composed of the three terms between brackets in (75). The first
two terms are savings channels and reflect how the change in consumption affect interest
rate. Each effect is proportional to the “effect base” (i.e., the consumption level) and to
the semielasticity of interest rate to the relevant consumption. The last term is the labor
channel and reflects how the change in savings affect the wage. This term is proportional to
the total wage, wtle,t, and to the semielasticity of the wage to the employed consumption.

Similarly to (75), multiplying (72) by wt and adding (74) yields using (67) and (71):

(FL,t−wt)µt = λe,t

(
wtle,t

(
wt
∂ logwt
∂ce,t

+ ∂ logwt
∂le,t

)
+ cu,t+1

Rt+1

(
wt
∂ logRt+1

∂ce,t
+ ∂ logRt+1

∂le,t

))
(76)

which equalizes the net benefit of raising the labor supply by one unit (and hence the
consumption of employed agents by wt units) in terms of resources to its social cost. The
net benefit for resources (proportional to µt) is equal to the difference between the marginal
increase in GDP due to the higher labor supply and the marginal increase in employed
consumption (by wt units). This benefit is also proportional to the labor tax. Ideally,
absent of any other cost, the planner would raise labor supply up to the point where
the wage is equal to the marginal productivity of labor, which would maximize planner’s
resources. The planner does not do so because of the cost related to setting the labor
supply. As for savings, there is no direct cost because of the FOC on labor supply. The
cost channels through the externality of labor supply on prices. The magnitude of the
externality is driven by the Lagrange multiplier λe,t and the externality itself is composed
of the sum of two main terms. The first set of terms is proportional to the total wage, wtle,t,
and involves the semielasticities of the wage with respect to labor supply and consumption.
The second set of term is proportional to the unemployed consumption and involves the
semielasticities of the interest rate with respect to labor and consumption.

The semielasticities are at the core of the relationships (75) and (76). The Euler
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equation (68) and the labor FOC (67) imply:

∂ logRt+1

∂ce,t
= Ucc,e,t

Uc,e,t
,
∂ logRt+1

∂cu,t+1
= −Ucc,u,t+1

Uc,u,t+1
,
∂ logRt+1

∂le,t
= Ucl,e,t
Uc,e,t

,

∂ logwt
∂ce,t

= Ucl,e,t
Ul,e,t

− Ucc,e,t
Uc,e,t

,
∂ logwt
∂le,t

= Ull,e,t
Ul,e,t

− Ucl,e,t
Uc,e,t

.

Substituting these relationships into (75) and (76) yields:

βτKt+1r̃
K
t+1µt+1 = λe,t

(
ce,t

Ucc,e,t
Uc,e,t

− cu,t+1
Ucc,u,t+1

Uc,u,t+1
+ le,t

Ucl,e,t
Uc,e,t

)
, (77)

µtτ
L
t

w̃t
wt

= λe,t

(
le,t
Ull,e,t
Ul,e,t

− le,t
Ucl,e,t
Uc,e,t

+ ce,t
Ucl,e,t
Ul,e,t

− ce,t
Ucc,e,t
Uc,e,t

)
. (78)

At the steady state, and assuming that the Lagrange multipliers µ and λe are finite (in
our standard SRE), we find equation (29) and the subsequent equations of Section 3.1
with Ξ = λe

βµ
.

B Existence Results for Separable Utility Functions

We consider utility functions of the form U(c, l) = u(c)− v(l).

B.1 DRRA Utility Function

B.1.1 The Stone-Geary Utility Function

The Stone-Geary utility function is DRRA and corresponds to u(c) = (c−c)1−σ−1
1−σ if σ 6= 1 or

log(c− c) otherwise. The term c is a minimum consumption level, and σ > 0 is the inverse
of the elasticity of substitution. For the sake of convenience, we assume v(l) = χ−1 l1+ 1

ϕ

1+ 1
ϕ

,
where ϕ > 0 is the Frisch elasticity of labor supply, and χ > 0 scales labor disutility. In
this case, we have: σe = σce

ce−c , σu = σcu
cu−c , ϕe = ϕ, ςe = 0, whose expressions can be plugged

into (29) to obtain the wedge relationship.
Rather than further algebra derivation, we provide a numerical example of a Ramsey

equilibrium with positive taxes and binding credit constraints. We consider the calibration
of Table 3. The parameters (σ, β, α, and δ) are set to standard values. The preference
parameter c is set to 1.

In the equilibrium with binding credit constraints for unemployed agents, this calibration
generates the allocation and prices described in Table 4 – where we do not repeat that for
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Parameters Value

discount factor β 0.96
capital share α 0.36

capital depreciation rate δ 0.025
inverse of IES σ 1.0

labor scaling factor χ 1.0
Frish elasticity ϕ 0.5

utility consumption threshold c 1.0
steady-state public spending G 4.3278

Table 3: Calibration of an economy with a Stone-Geary utility function.

unemployed, labor supply and asset holdings are null. With a DRRA utility function, all
taxes and the NDG are positive. The equilibrium with binding credit constraint exists.33

Allocation and prices

employed agents consumption ce 1.087
labor supply le 2.910

unemployed agents consumption cu 1.085
taxes capital tax τK 0.626

labor tax τL 0.552

Table 4: Allocation of the economy with the calibration of Table 3.

B.1.2 The Fishburn Utility Function

The utility function proposed in Fishburn (1977), is isoelastic below a threshold and linear
after it. More formally:

u(c) =

c
σ c

1−σ−c1−σ

1−σ if σ 6= 1 or c log
(
c
c

)
otherwise if 0 < c ≤ c,

c− c if c ≤ c,

where c > 0 is a threshold. The function u is continuously differentiable on R∗+. This utility
function was used by Challe and Ragot (2016) and LeGrand and Ragot (2018) because
it generates tractable models. We again assume v(l) = χ−1 l1+ 1

ϕ

1+ 1
ϕ

. Assuming ce > c > cu,

33We have also checked that: (i) the public spending is too high for the first-best equilibrium to exist,
(ii) the calibration fulfills the Blanchard-Kahn conditions, and (iii) Proposition 5 still holds. We also did
so for other specifications (Fishburn, CARA, and KPR), even though we do not mention it below.
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which must be checked in equilibrium, we have: σe = σ, σu = 0, ϕe = ϕ, ςe = 0, that can
be plugged into (29) to obtain a relationship between capital and labor taxes.

As in the Stone-Geary case, we provide a numerical example rather than algebra
derivation. We consider the calibration of Table 5. The other parameters (β, α, δ, σ, χ,
ϕ) are identical to those of Table 3.

Parameters utility consumption threshold c public spending G

Value 1.0 0.5

Table 5: Calibration with a Fishburn utility function. Other parameters as in Table 3.

This calibration generates the allocation and prices described in Table 6. Consumption
levels are consistent with the threshold c, since cu < c < ce. Tax rates are positive, and the
post-tax gross rate R verifies 0 < βR < 1. Since the function is DRRA, the equilibrium
features positive taxes and positive NDG, as in the Stone-Geary case. The equilibrium
with binding credit constraint exists.

Allocation and taxes

employed agents consumption ce 0.934
labor supply le 1.171

unemployed agents consumption cu 0.697
taxes capital tax τK 9.160%

labor tax τL 0.007%

Table 6: Allocation in the economy with the calibration of Table 5.

B.2 An Example of IRRA Utility Function: The CARA Case

A standard example of IRRA utility function is the CARA case, which corresponds to the
utility function u(c) = − 1

γ
e−γc. We also assume v(l) = 1

χϕ
eϕl, where γ, ϕ > 0. We then

have: σe = γce, σu = γcu, ϕe = (ϕl)−1, ςe = 0, where σe > σu if ce > cu.
We provide a numerical example of an existing equilibrium with binding credit con-

straint. We use the calibration of Table 7. The other parameters (β, α, δ, and ϕ) are
identical to those of Table 5. Note that c does not play any role in this case.

The allocation featuring positive capital taxes is summarized in Table 8. The equilibrium
with binding credit constraint for unemployed agents thus exists with CARA utility function.
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Parameters absolute risk aversion γ labor scaling factor χ public spending G

Value 1.0 0.58811 0.01

Table 7: Calibration with a CARA utility function. Other parameters as in Table 5.

A particularity of this equilibrium comes from the IRRA property of CARA utilities, which
implies a negative NDG and hence a negative labor tax.

Allocation and prices

employed agents consumption ce 0.160
labor supply le 0.139

unemployed agents consumption cu 0.141
taxes capital tax τK 0.473

labor tax τL −0.295

Table 8: Allocation of the economy with the calibration of Table 7.

B.3 The KPR Utility Function

For the sake of completeness, we apply the same analysis to another standard non-separable
utility function, which is the KPR utility function (King et al., 1988). This utility function
is for instance used by Dyrda and Pedroni (2022) to compute optimal tax rates. We
use the following standard functional form: U(c, l) = 1

1−σc
γ(1−σ)(1 − l)(1−γ)(1−σ) and

U(c, l) = γ log(c) + (1− γ) log(1− l) if σ = 1. In this case, the IES is 1
1−γ+γσ .

The labor FOC can also be written as: ce,t = γ
1−γwt(1 − le,t). Combined with the

budget constraint of employed agents, we obtain: 1−le,t
1−γ = 1− ae,t

wt
. The constraints ce,t ≥ 0

and ae,t ≥ 0 imply 1 ≥ le,t ≥ γ.
As a short summary of the Ramsey program, if an interior steady-state with τK > 0

exists, then equation (29) becomes:

1− βR = FL − w
w

(1− γ)(σ − 1)le, (79)

and the Straub–Werning condition always holds.34 To prove the latter, we use the properties
of the KPR utility function and the agents’ FOCs to express prices in the aggregate budget
constraint ce + 1

R
cu = wle and in the wedge equation (79). Using the same steps as in

34It can also be shown that the no first-best condition is: 0 ≤ KFB
LFB

lFB− β
1−βG+ β

1+βwFB( γ
1−γ (1− lFB−

(1−lFB)
σ

1+γ(σ−1) )−lFB), where lFB is the unique root of l ∈ R+ 7→ γ
1−γwFB(1−l+(1−l)

σ
1+γ(σ−1) )+G−yFBl.
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Section A, we obtain:

0 = γ − le
1− le

U(ce, le) + βγU(cu, 0),

1− U(ce, le)
U(cu, 0)

cu
ce

=
(
wFBγ

1− le
ce
− (1− γ)

)
(σ − 1)le,

Uc(ce, le)
µ

= 1 + (FL/w − 1)(γ − le)(σ − 1). (80)

These three equations, together with the resource constraint correspond to the system
characterizing the allocation and the multiplier µ of the resource constraint.

Finally, substituting the expressions of R and w, (80) becomes: Uc(ce,le)
µ

= 1 −(
1− U(ce,le)

U(cu,0)
cu
ce

)
1−γ/le

1−γ . Note that 1−γ/le
1−γ ∈ (0, 1] since le ∈ [γ, 1) (see above). We de-

duce that Uc(ce,le)
µ
≥ min(1, U(ce,le)

U(cu,0)
cu
ce

) > 0. Hence, µ > 0, which concludes the proof.

Numerical illustration. We consider the calibration of Table 9. The preference param-
eters (σ and γ) are in the same ballpark as to those of Dyrda and Pedroni (2022). The other
parameter (β, α, and δ) are set to the standard values of Table 3. In the equilibrium with

Parameters inverse of IES, σ consumption share, γ public spending G

Value 2.0 0.6 0.5

Table 9: Calibration of an economy with a KPR utility function.

binding credit constraints for unemployed agents, this calibration generates the allocation
and prices described in Table 10. The taxes and NDG are positive.

Allocation and taxes

employed agents consumption ce 0.644
labor supply le 0.719

unemployed agents consumption cu 0.462
taxes capital tax τK 58.982%

labor tax τL 7.582%

Table 10: Allocation in the economy with the calibration of Table 9.
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C The GHH Utility Function

C.1 Proof of Proposition 2

The first-best allocation. The Lagrangian associated to the first-best allocation is:
LFB = ∑∞

t=0 β
t(log(cu,t)+log(ce,t−χ−1 l

1+1/ϕ
e,t

1+1/ϕ)+∑∞t=1 β
tµt(Kt−1 +Kα

t−1l
1−α
e,t −δKt−1−ce,t−

cu,t −Gt −Kt), together with non-negativity constraints ce,t, cu,t, le,t ≥ 0, which are not
binding. In that case, it is straightforward to check that the linear independence constraint
qualification (LICQ) holds and the optimization yields a maximum (see Sections C.2 and
C.3 below). Denoting by LFB := le the steady-state labor supply, the FOCs imply, at the
steady state, cu,FB = ce,FB −χ−1L

1+1/ϕ
FB

1+1/ϕ (computed using the resource constraint (16)) and:

KFB

LFB
=
( α

1
β

+ δ − 1
) 1

1−α , LFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
) α

1−αϕ, (81)

YFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
)α(1+ϕ)

1−α , KFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
) 1+αϕ

1−α . (82)

The decentralization of the first-best allocation. We now analyze the necessary
and sufficient conditions for which the first-best allocation can be decentralized. Using
the Euler equations (20) and (21) with equality, one finds: βRFB = 1. Distorting taxes
are also null: τK = τL = 0, while the government budget constraint (23) implies that
the public debt verifies: BFB = − β

1−βG < 0. To implement the first-best allocation, we
further need to check that no agent is credit-constrained.

Since βRFB = 1 and LFB = le,FB = (χwFB)ϕ, we obtain the same capital-to-labor
ratio and labor supply as in (81), the same output and capital as in (82). The wage is:

wFB = (1− α)
( α

1
β

+ δ − 1
) α

1−α . (83)

Furthermore, since agents are unconstrained, Euler equations and budget constraints
imply: RFBau,FB−ae,FB + w(χw)ϕ

ϕ+1 = RFBae,FB−au,FB. Using the financial market clearing
condition stating that ae,FB + au,FB = BFB +KFB implies: 21−β

β

au,FB
YFB

= g1 − G
YFB

,with g1

defined in (35). The credit constraint au,FB ≥ 0 and equation (82) imply the first-best
condition G

YFB
≤ g1, which concludes the proof of Proposition 2.
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C.2 Constraint Qualification

In our problem, even though the objective function is concave, the equality constraints
are not linear and the standard Slater (1950) conditions do not apply. However, we can
check that the linear independence constraint qualification (LICQ) holds in our problem.
This constraint qualification requires the gradients of equality constraints to be linearly
independent at the optimum (or equivalently that the gradient is locally surjective). At
any date t, two constraints matter for the instruments of date t. These are the constraints
at dates t and t+ 1. We can check that their gradient can be written as: 1 ϕ(χwt)ϕ w̃twt − (ϕ+ 1)(χwt)ϕ − β

1+β
wt−1(χwt−1)ϕ

1+ϕ

−r̃t+1 − 1 β
1+β (χwt)ϕr̃t+1 − (Rt+1 − 1) β

1+β
wt(χwt)ϕ

1+ϕ 0

 , (84)

which forms a matrix of rank 2. Indeed, looking at the first and third columns of the matrix
in (84) makes it clear that a sufficient condition is (1 + r̃t+1)wt−1 6= 0. This condition must
hold at the optimum, since equation (1) implies r̃t+1 ≥ 0 and wt−1 > 0.

C.3 Second-Order Conditions

In the program (17)–(26), we use (23) to substitute for the expression of Rt. We can
further use financial market constraint (25) to express Bt as a function of Kt and wt. The
planner’s program can be equivalently rewritten as a function of Kt and Wt = wt(χwt)ϕ:

max
(Kt,wt)t

E0

∞∑
t=0

βt
(

log(Wt)+log
(
Kt−1+F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1 + ϕ+ ϕβ

(1 + β)(1 + ϕ)Wt−Kt−Gt

))
.

The function (Wt, Kt−1) 7→ F (Kt−1, χ
ϕ

1+ϕW
ϕ

1+ϕ
t ) is concave as the composition of concave

and increasing functions. We thus deduce that the mapping defined by (Wt, Kt−1, Kt) 7→
log (Wt)+ log(Kt−1+F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1+ϕ+ϕβ

(1+β)(1+ϕ)Wt−Kt−Gt) is concave. Any interior
optimum characterized by the FOCs must thus be a maximum.

C.4 Proof of Proposition 3

FOCs Derivations. We first derive the FOCs of the model featuring binding credit con-
straints. In the GHH case, labor supply of employed agents is le,t = (χwt)ϕ. Using individ-
ual budget constraints and log utility, Euler equations (20) becomes: ae,t = β

1+β
wt(χwt)ϕ

1+ϕ ≥ 0.
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The Ramsey program can then be written as:

max
{Bt,wt,Rt}

E0

∞∑
t=0

βt
(

log
(

1
1 + β

wt(χwt)ϕ
ϕ+ 1

)
+ log(Rt

β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

)
)
, (85)

s.t. wt+1(χwt+1)ϕ > β2Rt+1Rtwt(χwt)ϕ, (86)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

+ wt(χwt)ϕ = Bt (87)

+ F ( β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

−Bt−1, (χwt)ϕ).

Note that the Euler inequality for unemployed agents (86) is equivalent at the steady state
to βR < 1, which will always hold in equilibrium (see below).

Defining by convention w−1 as β
1+β

w−1(χw−1)ϕ
1+ϕ = a−1 and by βtµt the Lagrange multiplier

on (87), the FOCs associated to the program (85)–(87) can be written as (for t ≥ 0):

µt = β(1 + FK,t+1)µt+1, (88)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

, (89)

0 = (1 + β)(ϕ+ 1) 1
wt

+ β(χwt)ϕ
β

1 + β
µt+1(FK,t+1 −Rt+1 + 1) (90)

+ χµt(χwt)ϕ−1 (ϕFL,t − (ϕ+ 1)wt) ,

We can take advantage of FOCs (88) and (89) to simplify FOC (90) as follows: µtwt(χwt)ϕ(1−
(1 + β)ϕ τLt

1−τLt
) = (1 + ϕ)(1 + β), which is a time-t equation only. The only dynamic FOC

is the forward-looking equation (88). We will check that the system is well-defined and
does not raise convergence issues.

Note that because of FOC (89), µ = 0 or R = 0 is not possible at the steady state.
FOCs (88)–(90) and governmental budget constraint (87) become at the steady state,
where we denote variables without subscripts:

1
1 + β

µw(χw)ϕ = ϕ+ 1 + µ(χw)ϕϕ(FL − w), (91)

1 = β(1 + FK) (92)

1 = Rµ
β

1 + β

w(χw)ϕ
1 + ϕ

(93)

F ( β

1 + β

w(χw)ϕ
1 + ϕ

−B, (χw)ϕ) = G+ (R− 1) β

1 + β

w(χw)ϕ
1 + ϕ

+ w(χw)ϕ. (94)

We can check that equations (91) and (93) yield τK = ϕ1+β
1−β

τL

1−τL (equation (34)). Finally,
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the steady-state Ramsey allocation for the interior solution is the solution of the system
of two equations in R and w, using (87), and (29): w = (F (kFB ,1)−G)(1+ϕ)+wFBϕ

1+2ϕ+ 1−β
1+β

, where

kFB := KFB/LFB =
(

1/β−1+δ
α

)− 1
1−α and wFB = (1− α)kαFB. Public debt is B = ae −K =

(χw)ϕ
(

β
1+β

1−τL
1+ϕ wFB − kFB

)
.

The Laffer threshold. Using (34) and (92), as well as the properties of F , the govern-
mental budget constraint (94) implies that τL is a solution of T (τL) = 0, where:

T :τ ∈ (−∞, 1) 7→ τ − 1
1− α

G
YFB

(1− τ)−ϕ − g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
. (95)

The mapping τ 7→ T (τ) is akin to a Laffer curve. Indeed, we can check that T is
continuously differentiable, strictly concave, with a unique maximum over (−∞, 1). In
consequence, the function T admits either zero, one, or two solutions. The number of
solutions depends on the level of public spending G in (95). When public spending is too
high, there is no level of labor tax that makes this public spending sustainable: T (τ) < 0
for all τ ∈ (−∞, 1). When the public spending is sustainable, T typically admits two
roots. The smaller root corresponds to a low tax and a high labor supply, while the larger
root corresponds to a high tax and a low labor supply. There is a third case that is the
limit between sustainability and no sustainability. In this situation, there is a unique tax
rate that enables public spending to be financed.

The limit case of the Laffer curve happens when the extremum point of the Laffer
curve is the only root of the function. It can be checked that this corresponds to the tax
level τLLa that verifies T (τLLa) = T ′(τLLa) = 0 and defined in (37), which is well-defined
since g1 ≥ −1−β

1+β
1−α
ϕ+1 . This corresponds to a ratio of public spending gLa of equation (36).

So, any public spending such that G
YFB

> gLa cannot be financed by any tax system.
Oppositely, when G

YFB
< gLa, two different tax levels enable the government to finance

public spending, and the planner will always opt for the lowest tax rate. Indeed, taxes
have an unambiguously negative impact on consumption levels, since: Ce = 1

1+β (1 −
τL)ϕ+1wFB(χwFB)ϕ

1+ϕ and cu = Cu = (1− (1−β)τK)Ce. So larger taxes decrease consumption
and hence individual welfare.

As a conclusion, let us prove that gLa ≥ g1 and more precisely the following lemma.

Lemma 1. We have gLa ≥ g1. The equality only holds if ϕ
1−α

g1
1+ 1−β

1+β
1

1+ϕ+ ϕ
1+ϕ

= 1. Otherwise,
the inequality is strict.
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Proof. Note that by construction, gLa ≥ 0. The result thus holds if g1 < 0. We assume
that g1 ≥ 0. Using the definitions of gLa and g1, we have:

gLa − g1
κ

= ( ϕ

1 + ϕ
)ϕ1− α

1 + ϕ
(1 + g1

κ
)1+ϕ − g1

κ
,

with κ = (1 − α)(1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ) > 0. The sign of gLa − g1 can be determined
by focusing on the function s : x ∈ R+ 7→

(
ϕ

1+ϕ

)ϕ 1
1+ϕ(1 + x)1+ϕ − x, which is well-

defined and continuously differentiable on R+. We have s′(x) ≥ 0 iff
(

ϕ
1+ϕ

)ϕ
(1 + x)ϕ ≥ 1

or x ≥ ϕ−1. The function s thus admits a minimum for x = ϕ−1, whose value is:
s(ϕ−1) =

(
ϕ

1+ϕ

)ϕ 1
1+ϕ(1+ϕ

ϕ
)1+ϕ − 1

ϕ
= 0. We deduce that s(x) ≥ 0 and the equality holds

iff x = ϕ−1, which concludes the proof.

The Straub-Werning threshold. The relationship (34) does not provide any upper
bound on the capital tax, which diverges when τL becomes close to 100%. However, the
post-tax interest rate sets an implicit bound on the capital tax. Indeed, the post-tax
interest rate must remain positive – otherwise unemployed agents would face negative
consumption. The positivity of the post-tax rate is equivalent to the positivity of the
Lagrange multiplier µ through FOC (93). Since xu = 1−(1−β)τK

1+β
w(χw)ϕ

1+ϕ , the capital tax
must remain below a threshold

τKSW := 1
1− β . (96)

When τK increases toward τKSW , the real interest rate tends toward 0, and as w is finite
(due to the budget constraint of the government), then µ tends toward +∞. In other
words when the capital tax increases toward τKSW the planner finds it infinity costly to
implement a steady-state optimal allocation. After this threshold, such an equilibrium
cannot exist.

This tax threshold implies an upper bound on the labor tax τLSW (through equation
(34)) and also an upper bound on the level of public spending: G < gSWYFB, where gSW
is defined in (38). This concludes the proof of Proposition 3.

Checking that transfers are zero in a SRE with a positive capital tax. The
previous fiscal structure assumed that the planner could not implement positive transfers.
We prove here that this actually results from an optimal planner’s decision (i.e., the
planner would like to implement lump-sum taxes) in any SRE with positive capital
tax. A reformulation of the program (85) with transfer generates the necessary and
sufficient condition for transfers to be zero is 1

xe
+ 1

xu
< 2µ, where xe = 1

1+β
w(χw)ϕ
ϕ+1 and
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xu = R β
1+β

w(χw)ϕ
1+ϕ . In words, the utility increase of both agents for an marginal increase

in transfer (the left hand side) is lower than the marginal cost for the planner (the right
hand side). Using (93) stating that 1 = µxu and the Euler equation xu = βRxe, the
zero-transfer condition becomes βR + 1 < 2, which is equivalent to βR < 1 and τK > 0.
Transfers are zero in any SRE with positive capital tax.

C.5 The τK = 0-Equilibrium

We prove here that the steady-state equilibrium featuring τK = 0 is always dominated
by the equilibrium featuring binding credit constraint and τK > 0. We write with the
0-subscript the allocation where τK = 0, and with no subscript the allocation where τK > 0.
The proof is split into three parts: (i) the characterization of the τK = 0-equilibrium
(Section C.5.1); (ii) when the τk > 0-equilibrium exists, i.e., when the Straub-Werning
condition holds (Section C.5.2); and (iii) when the τk > 0-equilibrium does not exist, i.e.,
when the Straub-Werning condition does not hold (Section C.5.3).

C.5.1 Characterization of the τK = 0-Equilibrium

With the same steps as in Section C.1, we have: w0 = (1− τL)wFB, K0 = (1− τL)ϕKFB,
Y0 = (1− τL)ϕYFB. Governmental budget constraint becomes: B0 = − β

1−βG+ β
1−β τ

L
0 (1−

τL0 )ϕwFB(χwFB)ϕ. Perfect risk sharing (i.e., cu,0 = ce,0 − 1
χ

l
1+ 1

ϕ
e,0
1+ 1

ϕ

) and financial market
clearing (i.e., A0 = K0 +B0) imply after some manipulations:

2au,0
Y0

= β

1− β (g1 − gFB(1− τL0 )−ϕ) +
(

1
1− β + 1

1 + β

1
ϕ+ 1

)
βτL0 (1− α), (97)

2ae,0
Y

= 2au,0
Y

+ 2 β

1 + β

1− α
ϕ+ 1(1− τL0 ), (98)

meaning that ae,0 ≥ au,0 for all values of τL0 ≤ 1. We compute the consumption level cu,0
from individual budget constraint:

2 cu,0
YFB

= (1− τL0 )ϕg1 −
G

YFB
+ 2

1 + β

1− α
ϕ+ 1(1− τL0 )ϕ + ϕ

ϕ+ 1(1− α)τL0 (1− τL0 )ϕ. (99)

Computing the derivative of 2 cu,0
YFB

with respect to the labor tax τL0 yields: 1
ϕ(1−τL0 )ϕ−1

∂
∂τL0

2 cu,0
YFB

=
− (1−β)α

1+β(δ−1) − (1 − α)τL0 < 0, whenever τL0 ≥ 0. We deduce from the last inequality that

cu,0 is decreasing with τL0 (and hence aggregate welfare since cu,0 = ce,0 − 1
χ

l
1+ 1

ϕ
0
1+ 1

ϕ

). Since
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ae,0 ≥ au,0 for all values of τL0 , the value of τL0 is chosen as small as possible for credit
constraints not to bind and hence such that au,0 = 0. From (97), τL0 is the solution of:

τL0 = 1
1 + 1−β

1+β
1

ϕ+1

gFB(1− τL0 )−ϕ − g1
1− α , (100)

which is a Laffer-like curve, as (95), admitting 0, 1 or 2 solutions. Finally, regarding
allocation, we have:

cu,0 = ce,0 − χ−1 l
1+1/ϕ
0

1 + 1/ϕ = 1
1 + β

w0(χw0)ϕ
1 + ϕ

. (101)

C.5.2 Case where the τk > 0-Equilibrium Exists

The allocations with τK = 0 and τK > 0 can be written as the outcomes of the same
program, with the constraint τK ≥ 0. Indeed, consider the program:

max
{Bt,wt,Rt}

∞∑
t=0

βt
(

(1 + β) log
(

1
1 + β

wt(χwt)ϕ
ϕ+ 1

)
+ log(βRt)

)
(102)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

+ wt(χwt)ϕ = Bt (103)

+ F ( β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

−Bt−1, (χwt)ϕ),

with Rt ≥ 1 + r̃t, where r̃t = FK,t is exogenous. We now show that the previous program
has the desired properties.

We start with the case τK = 0. Denoting by βtµt the Lagrange multiplier associated to
the constraint (103), the maximization with respect to Bt yields: µt = β(1 + FK,t+1)µt+1,

or at the steady state: β(1 + FK) = 1. The constraint (103) implies then at the steady
state, using (81)–(82), that the labor tax, denoted τ̂ l0 verifies: (1− α)

(
1 + 1−β

1+β
1

1+ϕ

)
τ̂ l0 =

gFB
(1−τ̂ l0)ϕ − g1, which is the same equation as (100) for τL0 . Since the planner will also
choose the lowest solution, we deduce that τ̂ l0 = τL0 . Consumption levels then mechanically
verify equation (101), which proves that the steady-state equilibrium with τK = 0 is a
steady-state solution of the program (102)–(103) where we impose τKt = 0 at all dates.

We now turn to the unconstrained case (τK 6= 0). In that case, the FOCs of the
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program (102)–(103), with respect to Bt, Rt, and wt, respectively, are:

µt = µt+1β(1 + FK,t), (104)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

, (105)

(1 + β)(1 + ϕ)
wt

= µt
wt

((ϕ+ 1)wt(χwt)ϕ − ϕFL,t(χwt)ϕ) (106)

+ βµt+1

wt
(Rt+1 − 1− FK,t+1) β

1 + β
wt(χwt)ϕ,

which are identical to the FOCs (90)–(89) of the unconstrained case.
We therefore deduce that the allocation with τK = 0 is the solution of a constrained

program and is hence dominated by the allocation τk 6= 0 – whenever the latter exists.35

C.5.3 Case where the τk > 0-Equilibrium Does Not Exist

We now show that an equilibrium with τK = 0 does not exist even when the equilibrium
where τK > 0 does not exist. Assume now that the solution of (95) does not verify the
Straub-Werning condition. We will show that in that case the τk = 0-equilibrium does not
exist either. To do so, we focus on the limit case when the Straub-Werning condition does
not hold, implying that the solution to (95) is τLm = 1

1+(1+β)ϕ . The argument easily extends
to any value τL ≥ τLm (see explanation after equation (108)). Equation (95) implies that it
corresponds to a public spending gFB,0 verifying:

gFB,0(1− τLm)−ϕ = (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
τLm + g1. (107)

To show that the τk = 0-equilibrium does not exist, we show that there is no solution to
(100), and more precisely that, for all τL0 :

τL0 <
gFB,0(1− τL0 )−ϕ − g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) . (108)

The argument we develop would easily extend to any solution τL to (95), such that τL ≥ τLm.
Indeed, these cases would imply public spending levels higher than gFB,0. The equilibrium
non-existence would then be implied by inequality (108).

To show inequality (108), notice that τ0 ∈ (−∞, 1) 7→ gFB,0(1 − τL0 )−ϕ − g1 − (1 −
35Note that the argument could not be applied right away from the initial program formulation because

with τk 6= 0, the constraint au,t = 0 was binding – which is not present anymore with the modified program
(102)–(103).
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α)
(
1 + 1−β

1+β
1

1+ϕ

)
τL0 is convex admits a global minimum τL0,min = ( ϕgFB,0

(1−α)(1+ 1−β
1+β

1
1+ϕ))

1
ϕ+1 . To

prove inequality (108), we only need to show that ∆ > 0, where

∆ = (1 + β)(ϕ+ 1)
1 + (1 + β)ϕ

(
2(1 + (1 + β)ϕ)

(1 + β)((1 + β)(1 + ϕ) + 1− β) +
1+(1+β)ϕ

1+β g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)) 1
ϕ+1

(109)

− g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − 1,

which can be seen as a function of g̃1 = g1
(1−α)(1+ 1−β

1+β
1

1+ϕ) , defined on (− 2
(1+β)(1+ϕ)+1−β ,∞).

This function is concave, admits a unique maximum, (1+β)ϕ
(1+β)(1+ϕ)+1−β > 0, in g̃∗1 =

−2ϕ(1+β)
(1+(1+β)ϕ)((1+β)(1+ϕ)+1−β) . Thus, there exist two (mathematical) bounds denoted g̃inf

1 <

g̃∗1 < g̃sup
1 , such that ∆(g̃1) > 0 iff g̃1 ∈ (g̃inf

1 , g̃sup
1 ). The rest of the proof consists in finding

two economical bounds on g̃1, denoted by g̃min
1 and g̃max

1 and to prove that ∆(g̃min
1 ) > 0 and

∆(g̃max
1 ) > 0. We can then deduce from the properties of the function ∆ that ∆(g̃1) > 0

for all economically acceptable g̃1, which concludes the proof.

Lower bound on g̃1. The definition (35) of g1 = 1−β
β

α
1/β+δ−1 −

1−β
1+β

1−α
ϕ+1 readily implies:

g1
(1−α)(1+ 1−β

1+β
1

1+ϕ) ≥ −
1−β

(1+β)(1+ϕ)+1−β = g̃min
1 , or from (109): ∆(g̃min

1 ) ≥ (1+β)(1+ϕ)
(1+β)(1+ϕ)+1−β

(
(1 +

1
1+(1+β)ϕ)

ϕ
ϕ+1 − 1

)
> 0, where the second inequality comes from β ∈ (0, 1) and ϕ > 0.

Upper bound on g̃1. The upper bound on g̃1 is less straightforward. Equation (107) –
seen as an equation in τLm for a given gFB,0 – admits one or two roots (since by construction
the no-root case is excluded). To guarantee that the smallest solution is chosen, the
derivative of the τ 7→ (1−α)

(
1 + 1−β

1+β
1

1+ϕ + ϕ
1+ϕ

)
τ + g1− gFB,0(1− τ)−ϕ must be positive

in τLm (the function being concave, it has to intercept 0 before it reaches its maximum). Or
equivalently: ϕgFB,0(1− τLm)−ϕ−1 ≤ (1− α)

(
1 + 1−β

1+β
1

1+ϕ + ϕ
1+ϕ

)
. Using (107), we obtain

that this condition is equivalent to: g1
(1−α)(1+ 1−β

1+β
1

1+ϕ )
≤ 2β

(1+β)(1+ϕ)+1−β = g̃max
1 . From (109),

we obtain, after some manipulations:

∆(g̃max
1 )
τLm

≥ (1 + β)(1 + ϕ)
(1 + ϕ(1 + β)

1 + (1 + ϕ(1 + β))

) 1
ϕ+1

− 1
− β ϕ(1 + β)

(1 + (1 + ϕ(1 + β))) ,

whose left-handside can be seen as a function of ϕ(1+β)
1+(1+ϕ(1+β)) (that lies in (0, 1)). We

denote: ∆̃ : x ∈ (0, 1) 7→ (1 + β)(ϕ + 1)
(
(1 + x)

1
ϕ+1 − 1

)
− βx. Using a second-order

Taylor development, we have for x ∈ (0, 1): ∆̃(x)
x
≥ 1 − ϕ

ϕ+1
1+β

2 x > 0, where the second
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inequality comes from x < 1, β < 1, and ϕ > 0.

C.6 A Non-Interior Steady-State Equilibrium

When (95) admits a solution that does not verify the Straub-Werning condition, FOC (88)
holds and FOCs (90) and (89) can also be written as:(

1− (1 + ϕ(1 + β))τLt
)

(1− τLt )ϕµtw̃t(χw̃t)ϕ = (1 + β)(1 + ϕ), (110)

(1 + (1− τKt )FK,t)µt(1− τLt−1)ϕ+1w̃t−1(χw̃t−1)ϕ = (1 + β)(1 + ϕ)
β

. (111)

Equation (110) implies that for all t: τLt ≤ 1
1+ϕ(1+β) and τL = limt→∞ τ

L
t ≤ 1

1+ϕ(1+β) . From
(110), there are possibly non-interior steady states, featuring limt µt =∞ or limt w̃t =∞.

First case: limwt = w∗ <∞.

– The case w∗ = 0 is not possible. Otherwise there are no resources to pay G.

– Assume that limµt = ∞, then equation (110) implies limt τ
L
t = (1 + ϕ(1 + β))−1.

Equation (111) then yields limt(1 + (1− τKt )FK,t) = limtRt = 0.

Second case: limtwt = ∞. We thus have limt w̃t = ∞. Using factor price defini-
tions: χw̃t =

(
χ(1−α)

(1−τLt )αϕ
) 1

1+ϕα K
α

1+ϕα
t−1 yields limtKt = ∞ and limt

Kt−1
(χwt)ϕ = ∞. We deduce

limt FK,t = −δ, as well as limt µt =∞, limt τ
L
t = (1 + ϕ(1 + β))−1, and limtRt = 0.

These two non-stationary equilibria feature limt µt =∞ and limtRt = 0.

C.7 Characterization of Positive Public Debt

We prove here Result 1. The financial market clearing condition implies using the expression
of ae,t (see Section C.4) and the definition of w: B = (χw)ϕ

(
β

1+β
1−τL
1+ϕ FL −

K
L

)
, which is

positive iff: β
1+β

1−τL
1+ϕ > 1

FL

K
L
. Using the definitions of F and g1, we can simplify 1

FL

K
L

and obtain that B > 0 iff: τL < −1+ϕ
1−α

1+β
1−βg1. Using (95), we get the equivalent condition

gFB(1− τL)−ϕ < gpos the expression of gpos being given in (39).

C.8 Straub-Werning Condition with an IES Different From 1

We derive the conditions for µ > 0, considering a GHH utility function with an IES
different from 1. Following the same steps as in Section C.4, we find that the multiplier
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on the budget of the state is: µ = u′(cu) σ(βR+β(βR)
1
σ )

σ(1+β(βR)
1
σ )−(1−βR)

. The condition for µ > 0 is

(βR) 1
σ + 1

σ
R > 1

β
1−σ
σ

. When σ > 1, the condition is R > 0 (which is equivalent to g < ḡSW

when σ = 1). When σ < 1, the condition is R > R̄, where R̄ is the unique solution of
(βR̄) 1

σ + 1
σ
R̄ = 1

β
1−σ
σ

(as the left-hand-side is increasing).
We compute the steady-state value of R with the governmental budget constraint and

it is found as the solution of:

(1− g)
(
KFB

LFB

)α
− δKFB

LFB
= wFBϕ

1 + ϕ

σ(1 + ϕ)βR + (R + ϕ)(1− σ − βR)
(1− βR + σϕ)βR + ϕ(1− σ − βR)

where KFB/LFB is defined in (81), wFB in (83), and g = G/Y is the steady-state value of
public spending over GDP. The condition R > R̄ implicitly implies an upper bound on g.
We can check numerically that the Straub-Werning condition can be satisfied for σ < 1 if
g is low enough (thus R high enough and the capital tax small enough).

From these results, we conclude that the Straub-Werning condition (µ > 0) can be
satisfied for values of the IES different from 1.

D Simple Model Dynamics After a Period-0 Shock

D.1 Model Linearization and Proof of Proposition 4

Defining θ = 1
1+ϕ

β
1+β , FOCs (90) and (88) and government budget constraint (87) become:

µt = β(1 + αKα−1
t χ(1−α)ϕw

(1−α)ϕ
t+1 − δ)µt+1, (112)

0 = 1− µtwt(χwt)ϕ (1− θ) + ϕ

1 + ϕ
µt(1− α)Kα

t−1(χwt)ϕ(1−α), (113)

Kα
t−1(χwt)ϕ(1−α) = Gt +Kt − (1− δ)Kt−1 + 1

µt
+ (1− θ)wt(χwt)ϕ. (114)

We deduce Rt from 1 = Rtµtθwt−1(χwt−1)ϕ (i.e., FOC (89)) and Bt from Bt = θwt(χwt)ϕ−
Kt (i.e., financial market clearing). We denote by a hat the proportional deviation to the
steady-state value. The linearization of equations (112)–(114) yields:

µ̂t = Etµ̂t+1 + (1− β(1− δ))((α− 1)K̂t + (1− α)ϕEtŵt+1), (115)

0 = −αK̂t−1 + (A− 1)µ̂t + ((ϕ+ 1)(A− 1) + 1 + ϕα)ŵt, (116)

0 = G

Y
Ĝt + α

1
β
− 1 + δ

(
K̂t − β−1K̂t−1

)
− (A− 1)(1− α)ϕ

(
µ̂t

1 + ϕ
− ŵt

)
, (117)
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where τL is defined in (95) and A := (1 + 1
ϕ(1+β))(1− τ

L) > 1. The inequality A > 1 comes
from the Straub-Werning condition.

In the remainder, we will focus on full capital depreciation: δ = 1.

Dynamic system. In that case, we obtain from (115)–(117):

Et [µ̂t+1] = rµµ̂t + tµK̂t, (118)

K̂t = rK µ̂t + tKK̂t−1 + sKĜt, (119)

where we have defined:

rµ = (1 + ϕ)(A− 1) + 1 + αϕ

(1 + αϕ)A , tµ = (1− α)(1 + ϕ)(A− 1) + 1
(1 + αϕ)A , tK = 1

β

1
rµ
, (120)

rK = 1− α
αβ

(A− 1) ϕ

1 + ϕ

(
1 + (1 + ϕ)(A− 1)

(1 + ϕ)(A− 1) + 1 + ϕα

)
, sK = − G

αβY
. (121)

Since A > 1, it can be checked that the coefficients tK , rK , tµ are positive, while rµ > 1 and
sK < 0. Note that all these coefficients are defined at the steady-state and are independent
of the values Ĝ0, ρG defining the dynamics of the shock Ĝt.

Deriving a simplified dynamic system. Using an identification method, we look for
coefficients ρK , σK , ρµ, σµ, such that, for t > 1:

K̂t = ρKK̂t−1 + σKĜt (122)

µ̂t = ρµK̂t−1 + σµĜt. (123)

Combining (118)–(119) yields: EtK̂t+1−(tK+rµ+rKtµ)K̂t+rµtKK̂t−1 = (sKρG−rµsK)Ĝt.
Using (122), we obtain that ρK must solve the following equation: ρ2

K−(tK+rµ+rKtµ)ρK+
rµtK = 0, whose discriminant is: D = (tK + rµ + rKtµ)2 − 4rµtK . Since tK , rµ, rK , tµ ≥ 0,
we have D ≥ (tK + rµ)2 − 4rµtK = (tK − rµ)2 > 0, where the strict inequality comes from
tK = 1

βrµ
> 0. The equation thus admits two distinct roots, which are:

ρK,1 = tK + rµ + rKtµ +
√
D

2 and ρK,2 = tK + rµ + rKtµ −
√
D

2 . (124)

Since (tK + rµ + rKtµ)2 > D > 0, we deduce that 0 < ρK,2 < ρK,1.

Proof of Proposition 4. Let us now prove that condition (42) is a necessary and
sufficient condition for equilibrium stability. Since 0 < ρK,2 < ρK,1 and ρK,2ρK,1 = β−1 > 1,

72



we must have ρK,1 > 1, which imposes that ρK = ρK,2. The Blanchard-Kahn condition for
the system stability requires ρK,2 < 1. Note that in the limit case when the equilibrium does
not exist (i.e., τK = τKSW = 1

1−β ), and which corresponds to A = 1, it is straightforward to
check that ρK,2 = 1 and that the dynamic system is not stable. The condition ρK,2 < 1 is
equivalent to J := tK + rµ + rKtµ − rµtK − 1 > 0. Using equations (120)–(121), we can
show that J = J0 × P (A− 1), where J0 = ϕ(1−α)(A−1)

β(1+αϕ)A((1+ϕ)(A−1)+1+ϕα) > 0 since A > 1 and
P is a quadratic polynomial in A− 1:

P (A− 1) = 1 + αϕ

1 + ϕ
(−(1− β)(1 + ϕ) + 1− α

α
) + (A− 1)2 1− α

α
2(1 + ϕ)

+ (A− 1)
(
−(1− β)(1 + ϕ) + 1− α

α
+ 2(1 + αϕ)1− α

α

)
.

A necessary condition for P (A − 1) > 0 for all A > 1 is P (0) ≥ 0. However, P (0) ≥
0⇒ P ′(0) > 0. So, since P ′′(0) ≥ 0, P (0) ≥ 0 is a necessary and sufficient condition for
P (A− 1) > 0 for A > 1. The condition P (0) ≥ 0 is equivalent to (42), which concludes
the proof.. Note that a sufficient condition for stability is g1 < 0 since it implies (42).

D.2 Characterizing the Dynamics of Capital and Public Debt
and Proof of Proposition 5

Characterization of the system (122)–(123). We deduce from (118)–(119) that
(rµ − ρK)ρµ = −tµρK . Since rµ > 1, tµ > 0, and ρK ∈ (0, 1), we deduce that ρµ < 0.
Regarding parameters σK and σµ, we have from (118)–(119):

σK = rKσµ + sK , (125)

rµσµ = (ρµ − tµ)σK + σµρG. (126)

Equation (126) implies (rµ − ρG)σµ = (ρµ − tµ)σK . Using rµ > 1 > ρG and the definition
of ρµ implying that ρµ− tµ = rµρµ/ρK < 0, we deduce that σµ and σK have opposite signs.
Using rK > 0 and sK < 0 in equation (125), we deduce that σµ > 0 > σK .

The role of the shock persistence ρG. Combining (125) and (126) yields: (rµ + (tµ−
ρµ)rK)σµ = (ρµ − tµ)sK + σµρG, or using the implicit function theorem: (rµ − ρG + (tµ −
ρµ)rK) ∂σµ

∂ρG
= σµ, since only σµ (and σK) depend on ρG. Since rµ > 1 > ρG, and σµ, tµ, rK >

0 > ρµ, we deduce using the previous equation and (125) that: ∂σµ
∂ρG

> 0 and ∂σK
∂ρG

> 0.
The previous derivative, and equation (123), imply µ̂0 = σµĜ0, which implies that for the
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same initial shock Ĝ0, ∂µ̂0
∂ρG

∣∣∣
Ĝ0
> 0. Then, from (116), we have: ŵ0 = − A−1

((ϕ+1)(A−1)+1+ϕα µ̂0,

which implies ∂ŵ0
∂ρG

∣∣∣
Ĝ0
< 0. Finally, from ∂σK

∂ρG
> 0, we deduce ∂K̂0

∂ρG
< 0.

Dynamic of the capital stock. By induction, (40) and (122) imply: Ĝt = ρtGĜ and
K̂t = σKφ(t)Ĝ0, with φ(t) = ρt+1

K −ρt+1
G

ρK−ρG
if ρK 6= ρG, or (t + 1)ρtG if ρK = ρG. We have

φ(0) = 1, φ(∞) = 0. Moreover, φ′(tm) = 0 iff tm+1 = ln(− ln(ρK))−ln(− ln(ρG))
ln(ρG)−ln(ρK) > 0 if ρK 6= ρG

or tm + 1 = − 1
ln(ρG) > 0 if ρK = ρG. It is direct to check that φ′(t) > 0 iff t < tm. The

capital response is procyclical (it has the sign of Ĝ0). When Ĝ0 > 0, capital increases
until date tm before decreasing and converging back to its steady-state value.

We now investigate the impact of ρG on tm. Defining rG := − ln(ρG) and rK := − ln(ρK),

we obtain: ∂tm
∂rG

=
rG−rK
rG

−(ln(rG)−ln(rK))
(rG−rK)2 if ρK 6= ρG. By the Taylor-Lagrange theorem, there

exists r ∈ (rK , rG), such that: ln(rK)− ln(rG) = rK−rG
rG
− (rK−rG)2

2r2 , from which we deduce:
∂tm
∂rG

= − 1
2r2 < 0 if ρK 6= ρG or ∂tm

∂rG
= −− 1

r2
G
< 0 if ρK = ρG. So tm decreases with rG and

increases with ρG: the more persistent ρG, the longer the impact of capital dynamics.

Dynamics of public debt. Regarding public debt, the financial market clearing implies
that Bt = β

1+β
χϕ

1+ϕw
1+ϕ
t −Kt. Defining αB := 1

B
β

1+β
χϕ

1+ϕw
1+ϕ, we have: B̂t = αBŵt− (αB −

1)K̂t. Using equations (88), (122), and (123), one finds B̂t = ΘKĜ0ρ
t
K −ΘGĜ0ρ

t
G, with:

ΘK :=
(
αB

α− (A− 1) ρµ
(ϕ+ 1)(A− 1) + 1 + ϕα

− (αB − 1) ρK
)

σK
ρK − ρG

, (127)

ΘG :=
(
αB

α− (A− 1) ρµ
(ϕ+ 1)(A− 1) + 1 + ϕα

− (αB − 1) ρK
)

σK
ρK − ρG

(128)

+ αB
A− 1

(ϕ+ 1)(A− 1) + 1 + ϕα
σµ + (αB − 1)σK .

Proof of Proposition 5. At impact (t = 0), we have:

BB̂0 = −
(

β

1 + β
χϕw1+ϕ A− 1

(ϕ+ 1)(A− 1) + 1 + ϕα
σµ(ρG) + σK(ρG)K

)
Ĝ0(ρG), (129)

where we have explicitly noted the dependence on ρG. Recall that ∂σµ
∂ρG

> 0, ∂σK
∂ρG

> 0, and

since the ˆNPV 0 is fixed and Ĝ0 endogenous, ∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV
< 0.

As a consequence, if the public debt is positive at the steady state (B > 0 equivalent
to ḡ1 < 0 – see Section C.7), then for a positive exogenous initial shock, Ĝ0 > 0,
∂σµ
∂ρG

> 0, ∂σK
∂ρG

> 0 imply ∂B̂0
∂ρG

< 0. The higher the shock persistence, the greater the
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variation of public debt at impact decreases: ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

< 0.

In the case of a constant ˆNPV 0, we have: B ∂B̂0
∂ρG

∣∣∣∣ ˆNPV 0

= ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

+ BB̂0
Ĝ0(ρG)

∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV 0

. If

in addition to B > 0, we also have B̂0 > 0, we deduce since ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

< 0 and ∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV
< 0:

B ∂B̂0
∂ρG

∣∣∣∣ ˆNPV 0

< 0.

D.3 Numerical example

Figure 4: Examples of the dynamics of fiscal variables for a shock with the same net
present value and persistences ρG = 0.3 (black line) and ρG = 0.9 (blue dashed line). See
the text for details.

Figure 4 plots the dynamics of the economy and of the instruments of the planner
for two shocks with the same NPV but different persistences, the initial size of the shock
Ĝ0 being adjusted. The parameters are α = 0.3, β = 0.7, ϕ = 0.3, δ = 1, G = 0.01, χ = 1,
and one can check that ḡ1YFB < G, G ≤ gSWYFB, and G < gLaYFB. This economy has
an equilibrium capital tax of 6%, a labor tax of 3%, and a (small) positive public debt.
The low-persistence economy with ρG = 0.2 corresponds to the black solid line, while the
high-persistence economy with ρG = 0.9 corresponds to the blue dashed line.
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Panel 1 plots the increase in public spending. For the increase to be the same in
NPV, it increases by 1% on impact in the case of low persistence and by 0.44% in the
case of high persistence. Panel 2 plots the social value of public liquidity, µ (i.e., the
Lagrange multiplier on the government budget constraint). When the persistence is low,
the increase is higher on impact but much less persistent compared to the high-persistence
case. Panel 3 plots the capital tax, and panel 4 the labor tax. When the persistence is low,
both capital and labor taxes increase more on impact but are much less persistent. Capital
tax increases by one order of magnitude more than the labor tax on impact, to front-load
the adjustment, because period-0 capital taxes are not distorting (see Farhi, 2010 for
a discussion of a similar result with complete insurance markets). However, to avoid
reducing the resources of credit-constrained agents, the planner does not fully front-load
the adjustment and the labor tax is used on the whole transition. Labor taxes barely
increase in both economies. Consequently, there is a long-lasting increase in both capital
and labor taxes when the persistence is high. Therefore, any further increase in taxes
would be very costly. This creates a strong incentive not to increase public debt, to avoid
a higher interest repayment and hence higher taxes. As can be seen in panel 5, public
debt increases in the low-persistence economy whereas it decreases in the high-persistence
economy. Finally, panel 6 plots aggregate consumption, which falls in both cases, much
more so when the persistence is low, but it returns much faster to its steady-state value.

E Proof of Proposition 6

Agent A deterministically transits from employment to unemployment, while agent B is
endogenously hand-to-mouth (but works with productivity yB).

E.1 First-best

The planner chooses (cXe,t, lXe,t, cXu,t)X=A,B, Rt, wt, Bt to maximize the aggregate welfare (45)
subject to the resource constraint:

ΩAcAe,t + ΩBcBe,t + ΩAcAu,t +Gt +Kt = Kt−1 + F (Kt−1,
∑
X

ΩXyX lXe,t). (130)

This yields the following FOCs – with βtµt being the Lagrange multiplier on (130) and
xXe,t := cXe,t − χ−1l

X,1/ϕ
e,t . First, χ−1l

X,1/ϕ
e,t = yXFL,t for labor (X = A,B), µt = ωA

ΩAu
′(xAe,t) =

ωB

ΩBu
′(xBe,t) and cAu,t = xAe,t for consumption and µt = βµt+1(1 +FK,t+1) for public debt. The
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last equation implies that at the steady–state the capital-to-labor ratio and the wage rate
are the same as in the homogeneous economy (equations (81) and (83)). The labor supply
is defined by LFB = ∑

X=A,B ΩX l
X,1/ϕ
e and lXe,FB = χϕyX,ϕwϕFB (X = A,B). Allocations

are given by: cAu,FB = cAe,FB − ϕχϕ

1+ϕy
A,ϕ+1wϕ+1

FB and cBe,FB = ϕχϕ

1+ϕy
B,ϕ+1wϕ+1

FB + ωB

ΩB
ΩA
ωA

(cAe,FB −
ϕχϕ

1+ϕy
A,ϕ+1wϕ+1

FB ) where the consumption level cAe,FB is determined by the resource constraint
(130) at the steady state.

The first-best allocation cannot be decentralized in general. Indeed, we only have two
instruments for the decentralization (aAe and aAu ), while have three constraints: the market
clearing condition, and the two first-best FOCs: ωA

ΩAu
′(xAe,t) = ωB

ΩBu
′(xBe,t) and cAu,t = xAe,t.

E.2 Full risk-sharing

We now turn to the case where there is no tax τL = τK = 0. The labor supplies and
consumption levels verify: lX,1/ϕe,FRS = χwFBy

X and cAu,FRS = xAe,FRS. The latter with the
market clearing condition ΩA(aAe,FRS+aAu,FRS) = BFB+KFB gives asset holdings: 2aAe,FRS =
BFB+KFB

ΩA + β
1+β

χϕ

1+ϕy
A,ϕ+1wϕ+1

FB and 2aAu,FRS = BFB+KFB
ΩA − β

1+β
χϕ

1+ϕy
A,ϕ+1wϕ+1

FB . The public
debt level is imposed by the governmental budget constraint: BFB = −βG/(1− β). Note
that given this allocation, the budget constraints and resource constrain hold.

E.3 The no-capital tax equilibrium

In the absence of a capital tax, there is a perfect risk-sharing between employed and
unemployed agents of type A. We thus have at the steady state: βRFB = 1, lXe,τL =
(χwFByX)ϕ(1− τL)ϕ and xAe,τL = cAu,τL (where we denote by the subscript τL the variables
in this equilibrium).

The governmental budget constraint implies G+ (RFB − 1)BτL = τLwFBLτL or using
LτL = (χwFB)ϕ(1− τL)ϕ(ΩA(yA)ϕ+1 + ΩB(yB)ϕ+1), we have:(

1
β
− 1

)
BτL = −G+ τL(1− τL)ϕwFB(χwFB)ϕ(ΩA(yA)ϕ+1 + ΩB(yB)ϕ+1).

The capital market clearing condition gives ΩA(aAe,τL+aAu,τL) = BτL+(1−τL)ϕ(ΩA(yA)ϕ+1+
ΩB(yB)ϕ+1)KFB, while the equation xAe,τL = cAu,τL yields:

(1 + β−1)(ae,τL − au,τL) = χϕ

1 + ϕ
(wFByA)ϕ+1(1− τL)ϕ+1.

We deduce from the last two equations the asset holdings and finally the consumption
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levels from individual budget constraints.

E.4 Case with binding credit constraints

We assume that τKt > 0. The type B agents are credit constrained. The Ramsey program
consists for the planner to choose ((cXe,t, lXe,t, cXu,t)X=A,B, ae, Rt, wt, Bt)t≥0 to maximize the
social welfare (45) subject to the Euler equation of type-A agents u′(xAe,t) = βRt+1u

′(cAu,t+1),
the labor supply FOCs lXe,t = (χwtyX)ϕ, the individual budget constraints: cAe,t + aAe,t =
wty

AlAe,t, cAu,t = Rta
A
e,t−1, and cBe,t = wty

BlBe,t, as well as the governmental budget constraint:

Gt+Bt−1+(Rt−1)ΩAaAe,t−1+wt(ΩAyAlAe,t+ΩByBlBe,t) = F (ΩAaAe,t−1−Bt−1,ΩAlAe,t+ΩBlBe,t)+Bt

We also need to check that at the equilibrium, type-A unemployed agents and type-B
agents are credit constrained: u′(cAu,t+1) > βRt+1u

′(xAe,t) and u′(cBe,t+1) > βRt+1u
′(cBe,t).

Both constraints at the steady state are equivalent to βR < 1.
We denote by:

L1 = χϕ(ΩA(yA)ϕ+1 + ΩB(yB)ϕ+1)

the aggregate labor supply for a unitary wage. Using Euler equations and budget con-
straints, we express consumption solely out of the wage and interest rate. We thus obtain
that the Ramsey planner’s program can be written as:

max
(Rt,wt,Bt)t≥0

ωA
∞∑
t=0

βt
(

(1 + β) log( χϕ(yA)ϕ+1

(1 + ϕ)(1 + β)w
ϕ+1
t ) + β log(β) + log(Rt)

)

+ ωB
∞∑
t=0

βt
(

log(χ
ϕ(wtyB)ϕ+1

1 + ϕ
)
)
,

s.t. Gt +Bt−1 + (Rt − 1) β

(1 + ϕ)(1 + β)χ
ϕΩA(yA)ϕ+1wϕ+1

t−1 + L1w
ϕ+1
t

= F ( β

(1 + ϕ)(1 + β)χ
ϕΩA(yA)ϕ+1wϕ+1

t−1 −Bt−1, L1w
ϕ
t ) +Bt,

with additional constraints wt, Rt > 0. Denoting by βtµt the Lagrangian of the govern-
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mental budget constraint, we obtain the following FOCs:

ωA

ΩA
= µt

βRt

(1 + ϕ)(1 + β)χ
ϕ(yA)ϕ+1wϕ+1

t−1 ,

µt = βµt+1(1 + FK,t+1),

0 = (1 + ϕ)(ωA(1 + β) + ωB) + µtw
ϕ+1
t L1

(
−1 + ϕ(FL,t

wt
− 1)

)
+ µt+1

β

1 + β
χϕΩA(yA)ϕ+1wϕ+1

t β(FK,t+1 + 1−Rt+1).

At the steady state, we obtain:

ωA

ΩA
= βRµ

(1 + ϕ)(1 + β)χ
ϕ(yA)ϕ+1wϕ+1, (131)

1 = β(1 + FK) (132)

0 = (1 + ϕ)(ωA(1 + β) + ωB) + µwϕ+1L1

(
−1 + ϕ(FL

w
− 1)

)
(133)

+ βµ

1 + β
χϕΩA(yA)ϕ+1wϕ+1(1− βR).

Combing FOCs (131) and (133) implies with ωA + ωB = 1:

1− βR = ωB − ωA(1 + β)ΩB(yB)ϕ+1

ΩA(yA)ϕ+1 + ωAϕ(1 + β)
(

1+ ΩB(yB)ϕ+1

ΩA(yA)ϕ+1

)(
FL
w
− 1

)
,

which is equation (46) using the notation Λ = ΩB(yB)ϕ+1

ΩA(yA)ϕ+1 .
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F The General Model

F.1 Deriving FOCs

The Lagrangian of the Ramsey program (50)–(55) can be written as:

L = E0

∞∑
t=0

βt
F∑
f=1

ωfmf

ˆ
i

u(xfi,t)`(di) (134)

− E0

∞∑
t=0

βt
F∑
f=1

mf

ˆ
i

(
λfi,t − (1 + rt)λfi,t−1

)
u′(xfi,t)`(di)

− E0

∞∑
t=0

βtµt

(
Gt + Tt + rtAt−1 +

(
1
τ̃t

+ 1
1/ϕ+ 1

)
l
1/ϕ+1
t

χ

F∑
f=1

mf

ˆ
i

(yfi,t)τ̃t`(di)

− F
(

F∑
f=1

mf

ˆ
i

afi,t−1`(di)−Bt−1, lt
F∑
f=1

mf

ˆ
i

(yfi,t)
1/ϕ+1+τ̃t

1/ϕ+1 `(di)
)
−Bt +Bt−1

)
,

with the additional positivity constraints xfi,t, l
f
i,t ≥ 0 that always hold.

FOC with respect to public debt Bt. Deriving (134) with respect to Bt yields:
µt = β(1 + r̃t+1)µt+1, which is FOC (59).

FOC with respect to savings choices afi,t. Using ∂xgj,t

∂afi,t
= −1i=j,f=g and ∂xgj,t+1

∂afi,t
=

(1 + rt+1)1i=j,f=g, and the notation ψi,t of (56), deriving (134) with respect to ai,t yields
for unconstrained agents: ψi,t = βEt [Rt+1ψi,t+1] + βEt [µt+1(1 + r̃t+1 −Rt+1)], while for
constrained agents (ai,t = 0), we have λi,t = 0. Using FOC (59) and the notation ψ̂i,t of
(57), we deduce for unconstrained agents: ψ̂fi,t = βEt[Rt+1ψ̂

f
i,t+1], which is FOC (58).

FOC with respect to the interest rate Rt. Since ∂xfi,t
∂rt

= afi,t−1, deriving (134) with
respect to Rt yields: 0 = ∑F

f=1m
f
´
i

(
ψ̂i,ta

f
i,t−1 + λfi,t−1u

′(xfi,t)
)
`(di), which is FOC (60).

FOC with respect to labor supply lt. Using ∂xfi,t
∂lt

= 1
χτ̃t

(1/ϕ+ 1) l1/ϕt (yfi,t)τ̃t , deriving
(134) with respect to lt yields:

(1/ϕ+ 1) l
1/ϕ
t

χτ̃t

F∑
f=1

mf̂

i

(yfi,t)τ̃tψ̂i,t`(di) = µt
F∑
f=1

mf

J∑
j=1

sfj (y
f
j )τ̃t

 l1/ϕt

χ
− (yfj )

τ̃t
1/ϕ+1FL(Kt, Lt)

,
which is FOC (61).

80



FOC with respect to progressivity τ̃t. Using ∂xfi,t
∂lt

= 1
χτ̃t

(1/ϕ+ 1) l1/ϕt (yfi,t)τ̃t(−τ̃−1
t +

log yfi,t), the derivative of (134) with respect to τ̃t is:

0 = l
1/ϕ+1
t

χτ̃t

F∑
f=1

mf

ˆ
i

ψ̂i,t(yfi,t)τ̃t
(

log yfi,t −
1
τ̃t

)
`(di)

− µtlt
1/ϕ+ 1

F∑
f=1

mf
J∑
j=1

sfj log yfj

 l1/ϕt

χ
(yfj )τ̃t − (yfj )

1/ϕ+1+τ̃t
(1/ϕ+1) FL,t

 ,
which is FOC (63).

F.2 Consistency of the Two Approaches

We verify here that the analytical approach of Section 3.1 and the quantitative approach
of Section 4) yield consistent results in the case of GHH log utility. We proceed in two
steps. First, in Section F.2.1, we check that the application of the Lagrangian approach
to the environment of Section 3.1 delivers the same FOCs as in the analytical approach
(equations (88)–(90)). Second, in Section F.2.2, we compare the quantitative outcomes
of the two approaches and show that the analytical solution is the limit of the general
solution when the transition matrix converges to the anti-diagonal matrix.

F.2.1 Checking that FOCs are Identical

We check here that the FOCs of the Ramsey program derived in the general case of Section
4.1 (i.e., equations (58)–(63)) exactly simplify to the FOCs derived in the specific case of
Section 3.1 (i.e., equations (88)–(90)). The larger number of equations in the first case
comes from the definitions of Lagrange multipliers and additional instruments. We start
with expressing ψi,t in the context of the log utility function (u = log). The expression
(56) of ψi,t becomes:

ψi,txi,t = 1 + (λi,t −Rtλi,t−1) 1
xi,t

. (135)

We now turn to the FOCs. Note that FOC (59) is exactly the same as FOC (88), while
FOC (63) has no equivalent in the simplified version since the progressivity parameter τt
is set to one (or τ̃t to 1 + ϕ). The three remaining FOCs are equations (58), (60), and
(61) for which we only have one type (F = 1) and two types. Taking advantage of the
deterministic transitions, as well as the fact that unemployed agents are credit-constrained
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with null productivity, these FOCs can also be written as:

ψe,t − µt = βRt+1(ψu,t+1 − µt+1), (136)

µtxu,t = ψu,txu,t + λe,t−1

ae,t−1
, (137)

µtxe,t = ψe,txe,t + µtxe,tϕ
(

1− FL,t
wt

)
, (138)

while similarly expressions of ψi,t in (135) can further be specified as:

ψe,txe,t = 1 + λe,t
xe,t

, (139)

ψu,txu,t = 1−Rtλe,t−1
1
xu,t

. (140)

Combining (137) and (140) with ae,t−1 = xu,t
Rt

(unemployed budget constraint) gives:

µtxu,t = 1, (141)

which is, with the expression of xu,t = Rt
β

1+β
wt−1(χwt−1)ϕ

1+ϕ , identical to FOC (89).
Using the consumption Euler equation (20) stating that xu,t+1 = βRt+1xe,t, the budget

constraints (18) and (19), and equation (141) meaning that 1 = βµt+1Rt+1xe,t, we deduce
from (136) and (139):

λe,t
xe,t

= β

1 + β
(µtxe,t − 1). (142)

Finally, we turn to FOC (138). Combined with the expressions of ψe,t in (139), and of
λe,t in (142), this becomes:

xe,tµt

(
1− (1 + β)ϕ τLt

1− τLt

)
= 1. (143)

Using the budget constraint (18) stating that xe,t = wt(χwt)ϕ
(1+β)(1+ϕ) , equation (143) becomes

FOC (90) (or more precisely its equivalent representation). This completes the proof that
the generic FOCs of Section 4.1 exactly imply the FOCs (88)–(90).

F.2.2 Comparing the Quantitative Outcomes of the two Approaches

We show that the analytical solution can be computed as the limit of the quantitative
model where the transition matrix converges to the anti-diagonal matrix of Assumption A.
We thus consider a specification of the quantitative model that is similar to the one of
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the analytical model: a GHH utility function, a linear labor tax, a two-state productivity
process, and a zero credit constraint. We consider the transition matrix Πε defined for any

ε ∈ [0, 1] as: Πε =
 ε 1− ε

1− ε ε

, which for ε = 0 corresponds to the anti-diagonal case

of Assumption A.
We use the same calibration as in Figure 4, namely: α = 0.3, β = 0.7, ϕ = 0.3, δ = 1,

G = 0.01, χ = 1. This calibration guarantees the existence of a positive debt and a positive
capital tax in the analytical model (when ε = 0). We compute the optimal steady-state
fiscal policy as a function of ε with the truncation approach, as in Section 4. We plot the
results in Figure 5. The first observation is for low values of ε (from 10−6 to 10−10): the
outcomes of the two models are very similar. The quantitative resolution is thus consistent
with the analytical method. The second observation is when ε increases beyond 10−5,
the capital tax diminishes sharply, while the labor tax goes up. This result is consistent
with intuition. Indeed, in this very stylized setup, a higher ε means that a higher share
of the population remains unemployed with a null income. Their sole resource is their
savings. Diminishing the capital tax fosters savings and enables agents to better self-insure
themselves against the null income risk. Increasing the labor tax enables the government
to balance its budget – since public spending remains fixed.

Figure 5: Comparison of the results of the quantitative model (plain lines) to those of the
analytical model (dashed lines).

G The Ramsey Program on the Truncated Model

The (refined) truncation consists in expressing the model in terms of groups of agents
(called truncated histories, because they share the same recent idiosyncratic histories)
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instead of individual agents. The resulting model, called the truncated model has the
major advantage of admitting a finite state-space representation, which lends itself to the
computation of optimal Ramsey policies. In Section G.1, we explain how to construct
truncated histories. In Section G.2, we construct the truncated model via a proper
aggregation of the underlying model. We also express the Ramsey program in this model
and compute the associated FOCs in this model. Finally, in Section G.3, we explain
how we use the inverse optimal approach in the truncated Ramsey model to compute the
weights of the SWF based on a given fiscal system.

G.1 The Refined Truncation: Definition and Construction

G.1.1 Definitions

Agents face an idiosyncratic risk y, whose realizations belong to a finite set Y of cardinal |Y|.
A possible history in period t is a sequence of idiosyncratic states: yt = (y0, . . . , yt) ∈ Y t+1.
The probability to transit from an history yt = (y0, . . . , yt) at date t to an history ỹt+1 =
(ỹ0, . . . , ỹt+1) at date t+1 is equal to 1(y0,...,yt)=(ỹ0,...,ỹt)ΠYytỹt+1 , where ΠYytỹt+1 is the probability
to switch from productivity level yt to productivity level ỹt+1 and 1(y0,...,yt)=(ỹ0,...,ỹt) is equal
to 1 if ỹt+1 is a continuation of yt and 0 otherwise. In the case of ex-ante heterogeneity,
the matrix ΠY can be constructed from the matrices Πf (see Section 2).

We consider a set H of vectors of elements of Y that are possibly of different lengths.
Each element of H, denoted by h and of length Nh, is called a truncated history and
represents a possible history over the last Nh periods.

The set H will be called a partition of the set of idiosyncratic histories if at any date
t sufficiently large (including at the steady state t =∞), each agent can be assigned to
one and only one truncated history. More precisely, for any t sufficiently large, for any
history (y0, . . . , yt) ∈ Y t+1, there must be a unique h ∈ H such that (yt−Nh+1, . . . , yt) = h.
In other words, an history h is a vector of productivity levels, where the last element
represents the current productivity level and previous elements represent productivity
levels in earlier periods.

We can then compute the transition probabilities between any two elements h and
h̃ (in the next period) of the partition H and we denote this probability Πhh̃. If h =
(yh,−Nh , . . . , yh,0) and h̃ = (yh̃,−Nh̃ , . . . , yh̃,0), the probability Πhh̃ can be defined as Πhh̃ =
1(yh,min(−Nh,−Nh̃)+1,...,yh,0)=(yh̃,min(−Nh,−Nh̃),...,yh̃,1)Πyh,0yh̃,0

, i.e. the probability to transit from
productivity level yh,0 to yh̃,0 and h̃ being a possible continuation of h.

Finally, a truncation is a partition where (Πhh̃)h,h̃∈H is a proper transition matrix,
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i.e., such that Πhh̃ ≥ 0 (which holds by construction of the probabilities) and for all h,∑
h̃∈HΠhh̃ = 1. The latter condition does not hold for arbitrary partitions. For instance,

if Y = {y1, y2}, then {(y1, y1), (y1, y2, y1), (y2, y2, y1), (y2)} is a partition of idiosyncratic
histories but does not imply a well-defined transition matrix (the probabilities of the
transitions out of (y2) do not sum to 1). Using the transition probability, we can compute
the size of truncated histories as the stationary distribution associated to the transition
matrix Π. More precisely, the vector of truncated history sizes (Sh) is defined as:36

Sh =
∑
h̃∈H

Sh̃Πh̃h. (144)

LeGrand and Ragot (2022a) consider a uniform truncation H, where all truncated
histories have the same length N . this case, H is identical to YN and its cardinal grows
exponentially with N . LeGrand and Ragot (2022b) consider a refined truncation, where
truncation lengths can vary from one truncated history to another. However, their
construction is limited to two idiosyncratic states and we propose here a generalization of
the construction of a refined truncation to an arbitrary number of productivity states.

G.1.2 Construction of a refined truncation

The construction of the refined truncation is based on the observation that the vast
majority of idiosyncratic processes considered in the literature are persistent. This means
that their discretization in a finite number of productivity levels implies a transition
matrix with a dominant diagonal: ΠYyy > ΠYyỹ for all ỹ ∈ Y , ỹ 6= y. A consequence of this
persistence is that in a uniform truncation, truncated histories with constant productivity
(i.e., of the type (y, . . . , y) with the same y at all dates) are of much larger sizes (as defined
in equation (144)). The refined truncation consists then in splitting these large histories
into smaller ones, so as to obtain a partition with a reduced disparity in sizes.

The refined truncation can be constructed recursively starting from a uniform truncation
of length N . The initial truncation is then the set of truncated histories {(y1, . . . , y1), . . . ,
(yi, . . . , yi), . . . , (y|Y|, . . . , y|Y|)} with |Y|N elements. The first step of the refinement consists
in splitting each of the constant truncated history of length N into |Y| truncated histories
of length N + 1. For any i, the N -vector (yi, . . . , yi) is split into |Y| vectors of length

36In the case of ex-ante heterogeneity, the matrix Πh is block-diagonal, and hence the associated Markov
process is not irreducible. In that case, the vector of history sizes may not be unique (Sh). One possibility
is to carefully normalize (Sh) by ex-ante type (such that for any type f , the associated truncated histories
sum to the size mf ). Another option is apply the procedure of Section G.1.2 to each type (i.e., each block
of the transition matrix) and concatenate the resulting truncations of the different blocks.
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N + 1: (y, yi, . . . , yi) for all y ∈ Y – among which there is one constant N + 1-vector
(yi, . . . , yi). After the first refinement step, the refinement for each productivity level adds
|Y| − 1 elements (|Y| additions and one deletion), such that the cardinal of the partition
is |Y|N − |Y|+ |Y|2. The second step consists in splitting each of the |Y| constant N + 1-
vectors (yi, . . . , yi) into |Y| vectors of length N + 2, as in the first step. The refinement
is possible at any step since the previous step always introduces a constant productivity
vector. The refinement stops when the desired refined truncation length is achieved for
each constant productivity vector.

The refined truncation length can differ from one productivity level to another and
the refined truncation is characterized by a uniform truncation length N and a vector
of a refined truncation lengths (N1, . . . , N|Y|) – where Ni ≥ N is the truncation length
of the vector of constant productivity yi and is assumed to be greater than the uniform
truncation length. The resulting truncation counts |Y|N +(|Y|−1)∑|Y|i=1(Ni−N) elements,
which therefore grows linearly in the lengths (N1, . . . , N|Y|). The refinement is thus a
parsimonious method to reduce the size of the largest elements of the partition, while
keeping a reasonable number of partition elements.

Example of the construction of a refined truncation. To illustrate the truncation,
consider a productivity set Y = {y1, y2, y3} with |Y| = 3 elements and a refined truncation
with length parameters N = 2 and (N1, N2, N3) = (2, 3, 4). We detail the recursive
construction of the refined partition.

0. We start with the uniform partition with 32 = 9 elements, that is denoted H0 =
{(y1, y1), (y1, y2), (y1, y3), (y2, y1), (y2, y2), (y2, y3), (y3, y1), (y3, y2), (y3, y3)}. We re-
call that the truncated history (y2, y3) gathers all agents, who have the productivity
level y3 in the current period and y2 in the previous one.

1. In the first step, we split the constant productivity vectors (yi, yi) (i = 2, 3) by
adding one past productivity level. The truncated history (y1, y1) does not need to
be further refined since N1 = N = 2. The truncated history (yi, yi) for i = 2, 3 is
refined into {(y1, yi, yi), (y2, yi, yi), (y3, yi, yi)}. The updated truncation is:

H1 ={(y1, y1), (y1, y2), (y1, y3), (y2, y1),

(y1, y2, y2), (y2, y2, y2), (y3, y2, y2),

(y2, y3), (y3, y1), (y3, y2),

(y1, y3, y3), (y2, y3, y3), (y3, y3, y3)}.
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2. SinceN2 = 3, the truncated history (y2, y2, y2) does not need to be further split. In the
second step, only (y3, y3, y3) is refined into {(y1, y3, y3, y3), (y2, y3, y3, y3), (y3, y3, y3, y3)}.
This is the final step as (y3, y3, y3, y3) has N3 = 4 elements. The final truncation is:

H ={(y1, y1), (y1, y2), (y1, y3), (y2, y1),

(y1, y2, y2), (y2, y2, y2), (y3, y2, y2),

(y2, y3), (y3, y1), (y3, y2),

(y1, y3, y3), (y2, y3, y3),

(y1, y3, y3, y3), (y2, y3, y3, y3), (y3, y3, y3, y3)},

which has 15 elements, consistently with the formula |Y|N + (|Y| − 1)∑|Y|i=1(Ni −N).

The implementation of this algorithm is done in Julia in a functional way that allows the
code to stay close from the recursive algorithm we have just described.

G.2 The Ramsey program in the truncated model

We now provide the solution for optimal policy on the truncated model.

Aggregating the Bewley model. Constructing the truncated model requires to solve
the Bewley model at the steady state and then aggregate the solution in terms of truncated
histories instead of agents.

The first step is the model resolution at steady state for a given fiscal policy. Solving
the model of Section 2 (using standard methods such as EGM) yields the steady-state
wealth distribution as well as policy functions. The wealth distribution is denoted Λ :
R+ × Y → R+, such that Λ(da, y) is the distribution of agents with wealth in [a, a+ da)
and productivity y. The policy rules for savings, consumption, labor, and the Lagrange
multiplier on the credit constraint (ν in equation 10) are denoted by ga, gc, gl and gν and
are mappings from R+ × Y → R+. For instance, gc(a, y) is the current consumption level
of an agent endowed with the beginning-of-period wealth a and productivity y.37

For the second step, which consists in constructing the truncated model, we consider a
set of truncated histories H, as well as the associated transition matrix (Πhh̃)h,h̃∈H and the
corresponding vectors of length sizes (Sh). The construction of the truncated model aims
at attributing to each history h ∈ H an allocation that verifies budget constraints and

37Actually, because of the GHH assumption, the policy function for labor could simply be seen as a
function of the current productivity level.
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FOCs at the truncated-history level. Consider an history h = (yh,Nh−1, . . . , yh,0). The first
step is to compute the distribution over asset choices and histories (and not productivity
level). The construction is recursive. We start from the distribution Λ(·, yh,Nh−1) and
apply the policy rule ga(·, yh,Nh−2) to obtain the steady-state wealth distribution of agents
with history (yh,Nh−1, yh,Nh−2) that we still denote Λ(·, (yh,Nh−1, yh,Nh−2)). We then apply
the policy rules corresponding to the following productivity levels of h and derive the
steady-state wealth distribution of agents with history h – denoted as Λ(·, h).

The next step is to use this distribution to aggregate the steady-state model. First, the
mass of agents experiencing each history h ∈ H is Sh =

´ +∞
0 Λ(da, h), which is identical

to the computation in equation (144). Second, we compute the per-capita allocation for
each truncated history h. The per-capita consumption ch, beginning-of-period saving ãh,
end-of-period saving ah, and Lagrange multiplier value can be defined as follows:

zh :=
ˆ ∞

0
gx(a, yh,0)Λ(da, h)/Sh, for z = c, a, l, (145)

ãh :=
ˆ ∞

0
aΛ(da, h)/Sh, (146)

νh :=
ˆ +∞

−ā
gν (a, y1) Λ(da, h)/Sh. (147)

With the GHH assumption, the history-specific labor supply actually expresses as: lh =
(χ (1− τ)w)

1
1/ϕ+τ (yh)

1−τ
1/ϕ+τ . We define the set of credit constrained histories CH as the

non-empty set of histories in h such that: (i) the measure of credit-constrained histories is
as close as possible to the measure of credit-constrained agent in the underlying model
and (ii) the credit-constrained histories have the largest value of νh.

From the individual budget constraint (8), we construct history-specific budget con-
straints:

ch + ah = w(lhyh)1−τt + (1 + r)ãh. (148)

We also define an history-specific aggregation parameter ξuh :

ξuh :=
´∞

0 u
(
gc(a, y1)− χ−1

1+1/ϕgl(a, y1)1+1/ϕ
)

Λ(da, h)

u(ch − χ−1 l
1+1/ϕ
h

1+1/ϕ)
, (149)

such that the aggregate period utility of agents having a history h is the period utility
of the aggregate consumption and labor multiplied by ξuh . This parameter captures the
interaction between the non-linearity of the function u and the heterogeneity within h.
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We similarly define history-specific Euler-equation parameters ξEh :

ξEh u
′(ch − χ−1 l

1+1/ϕ
h

1 + 1/ϕ) = β(1 + r)
∑
h′∈H

Πh,h′ξ
E
h′u
′(ch′ − χ−1 l

1+1/ϕ
h′

1 + 1/ϕ)
+ νh, (150)

that guarantee that Euler equations hold for truncated histories.
The allocation (ch, lh, ah, ãh, νh)h given by equations (145)–(147), the budget constraint

(148), the Euler equation (150) characterize together with the set of credit-constrained
histories CH and the parameters (ξuh)h the truncated model for a given fiscal policy. Every
history h in the truncated model acts a “representative agent” with their own budget
constraint and their own Euler equation. The history-wise allocation is a solution of the
truncated model (with the within-heterogeneity parameters ξuh and ξEh ).

By construction, the prices and aggregate quantities (capital, labor, and consumption)
are the same in the truncated model as in the individual Bewley model. For the ability of
this aggregated model to capture the dynamics with aggregate shocks, see LeGrand and
Ragot (2022a) and LeGrand and Ragot (2022b), and Appendix H for the current model.

Ramsey problem. We now use the truncation to solve the Ramsey program. See
LeGrand and Ragot (2023) for the ability of the method to compute optimal policies.

We express the Ramsey program with given weights (ωf ) and given within-heterogeneity
parameters (ξuh , ξEh )h, and then derive the FOCs. We then guess a fiscal policy for which
we compute the truncated model (and the parameters (ξuh , ξEh )h). We verify that whether
the Ramsey FOCs hold for this fiscal policy, in which case it is optimal – or update the
fiscal policy (and the truncated model).

The objective of the planner is: W0 = E0
∑∞
t=0 β

t∑F
f=1 ω

f ∑
hf∈Hf Shf ξ

u
hfu(ct,hf −

χ−1 l
1+1/ϕ
hf

1+1/ϕ), where we have separated the histories of the F types of agents, to explicit
the role of social weights. To simplify the exposition we will write ωf(h), or simply
ωf when no confusion is possible, for the social weight of an agent of type f hav-
ing an history h ∈ H. The objective of the planner can thus be written as W0 =
E0
∑∞
t=0 β

t∑
h∈H ωf(h)Shξ

u
hu
(
ct,h − χ−1 l

1+1/ϕ
h

1+1/ϕ

)
,where ωf(h) are actually type-dependent

and not history-dependent. The Ramsey problem can be expressed as follows:

max
(rt,wt,τt,lt,Bt,Kt,Lt,(at,h,,ct,h,lt,h,νt,h)h∈H)

t≥0

W0 (151)

s.t. Gt + (1 + rt)Bt−1 + rtKt−1 + wt
∑
h

(lt,hyh)1−τt = F (Kt−1, Lt, zt) +Bt, (152)
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and subject to:

for all h ∈ H: ct,h + at,h = wt(lt,hyh)1−τt + (1 + rt)ãt,h + Tt, (153)

ξEh u
′(ct,h −

χ−1l
1+1/ϕ
t,h

1 + 1/ϕ ) = βEt
[
(1 + rt+1)

∑
h′∈H

Πhh′ξ
E
h′u
′(ct+1,h′ −

χ−1l
1+1/ϕ
t+1,h′

1 + 1/ϕ )
]
+νt,h,

(154)

at,h ≥ 0, νt,h(at,h + ā) = 0, νt,h ≥ 0, ct,h ≥ 0, (155)

lt,h = (χ (1− τt)wt)
1

1/ϕ+τt (yh)
1−τt

1/ϕ+τt , (156)

ãt,h =
∑
h̃∈H

Πh̃h,t

S,h̃
Sh
at−1,h̃, (157)

Kt +Bt =
∑
h

St,hat,h, Lt =
∑
h

St,hyhlt,h. (158)

As in the initial case, one can simplify the program with the change of variables: xt,h :=
ct,h − χ−1 (lt,h)1+1/ϕ

1+1/ϕ , lt := (χ (1− τt)wt)
1

1/ϕ+τt and τ̃t := (1/ϕ+1)(1−τt)
1/ϕ+τt . We now factorize the

Ramsey program (151)–(158) as in Section F by introducing Lagrange multipliers λt,h on
history-specific Euler equations (154). The new Ramsey objective is:

J = E0

∞∑
t=0

βt
∑
h∈H

[
ωfShξ

u
hu (xt,h)− λc,t,hξu,Eh u′(xt,h) + λ̃t,h(1 + rt)ξu,Eh u′(xt,h)

]
,

with λ̃t,h = 1
St,h

∑
h̃∈H St−1,h̃λt−1,h̃Πt,h̃,h. The new Ramsey program (151)–(158) is:

max
(rt,wt,τ̃t,lt,Bt,Kt,Lt,(at,h,,xt,h,νt,h)h∈H)

t≥0

J, (159)

s.t.Gt + rtAt−1 +
(

1
τ̃t

+ 1
1/ϕ+ 1

)
l
1/ϕ+1
t

χ

∑
y∈Y

Syy
τ̃t = F (At−1 −Bt−1, Lt) +Bt −Bt−1,

(160)

for all h ∈ H: xt,h + at,h = (1 + rt)ãt−1 + 1
χτ̃t

l
1+1/ϕ
t (yt,h)τ̃t , (161)

at ≥ −ā, νt,h(afi,t,h + ā) = 0, νt,h = βEt [(1 + rt+1)u′(xh′,t+1)]− u′(xt,h), (162)

ãt,h =
∑
h̃∈H

Πh̃h,t

S,h̃
Sh
at−1,h̃, λ̃t,h = 1

St,h

∑
h̃∈H

St−1,h̃λt−1,h̃Πt,h̃,h, (163)

At =
∑
h∈H

Shah,t, Lt = lt
∑
y∈Y

Syy
1/ϕ+1+τ̃t

1/ϕ+1 , (164)
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FOCs of the Planner. We denote by βtµt the discounted Lagrange multiplier on the
government budget constraint (160). We use the history-specific budget constraint (161)
to substitute for xt,h. The FOCs are then computed as derivatives with respect to at,h (for
unconstrained agent), Bt, lt, rt, and τ̃t. Similarly to the individual case in equations (56)
and (57), we define ψ̂h,t := µt −

(
ωfξuhu

′ (xh,t)−
(
λh,t − (1 + rt)λ̃h,t

)
u′′(xh,t)

)
. Denoting

by Ct,H as the set of credit constrained history at date t, the FOCs of (159)–(164) are:

Bt : µt = βEt [(1 + FK,t+1)µt+1] ,
ah,t : ψ̂h,t = βEtψ̂h′,t+1(1 + rt+1) for h /∈ Ct,H,

lt : 0 = 1+1/ϕ
χτ̃t

l
1/ϕ
t

∑
h∈H Shψ̂

f
i,h,t(yh)τ̃t−µt

∑
h∈H Sh

(
l
1/ϕ
t

χ
(yh)τ̃t−(yh)1+ τ̃t

1/ϕ+1FL,t
)
,

rt : 0 = ∑
h∈H Sh

(
ψ̂i,h,tãh,t−1 − λ̃h,tu′(xh,t)

)
,

τ̃t : 0 = l
1+1/ϕ
t

χτ̃t

∑Ntot

k=1 Shψ̂h,t(yh)τ̃t
(
− 1
τ̃t

+ log yh
)

−µt lt
1/ϕ+1

(∑
h∈H Sh log yh

(
l
1/ϕ
t

χ
(yh)τ̃t − (yh)

1/ϕ+1+τ̃t
1/ϕ+1 FL,t

))
.

(165)

G.3 Estimation of the social weights

We now provide formulas to derive the parameters ξE (equation (169)) and the social
weights ωf (equation (180)). Using simple linear algebra, we derive closed-form expressions.

We assume as given an indexing of histories over H of cardinal Ntot (total number of
histories). We denote with a bold letter the Ntot-vector associated to a given variable:
e.g., S = (Sh)h∈H is vector of history sizes. Similarly, a, c, l, and ν are the vectors of
end-of-period wealth, consumption, labor supply, and Lagrange multipliers, respectively.
These vectors are known from the steady-state equilibrium of the Bewley model. We also
define I as the (Ntot ×Ntot)-identity matrix, Π as the transition matrix across histories,
and P as the diagonal matrix having 1 on the diagonal at h if h is not credit-constrained
(i.e., h ∈ CH), and 0 otherwise. Defining ◦ as the Hadamard product, we have:

S = ΠS, (166)

S ◦ x+ S ◦ a = (1 + r)Π> (S ◦ a) + 1
χτ̃
l1/ϕ+1S ◦ (y)τ̃ , (167)

(I − P )a = 0Ntot , (168)

which correspond to the definition of history sizes (144), the individual budget constraint
(161), the definition of credit-constrained histories (155), respectively.
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Computing the ξs. Denoting by Dx the diagonal (Ntot × Ntot)-matrix with the
Ntot-vector x on the diagonal, the Euler equation (10) becomes: Du′(c)ξ

E = β(1 +
r)Π>Du′(c)ξ

E + ν, implying that:

ξE =
[(
I − β(1 + r)Π>

)
Du′(c)

]−1
ν. (169)

Finding the Constraints on the Social Weights ω. We now construct the con-
straints that the social weights (ωf)f=1,...,F must fulfill for the steady-state allocation to
be optimal for given values of the planner’s instruments.

We first define the F -vector of social weights we are looking for: ωF = (ωf)f=1,...,F .
We will show that there are two vectors L̂1, L̂2 such that all the FOCs of the planner are
fulfilled when L̂1ω

F = 0 = L̂2ω
F . Together with the normalization constraint (∑f ωf = 1),

this will impose three constraints on ωF , explaining why the weights are exactly identified
in our quantitative exercise of Section 5. Similarly to ωF , mF := (m1, . . . ,mF ) is the
F -vector of type shares. For simplifying algebra, we define the Ntot × F -matrix R0 that
maps a F -vector into an Ntot-vector (recall that 1Nf

tot
∈ RNf

tot is a N f
tot-vector of 1):

R0 :=



1N1
tot

0 0 0
0 1N2

tot
0 0

... ... . . . ...
0 0 . . . 1NF

tot

 ,

and the Ntot × F -matrix R1 := DSR0DmF that maps a F -vector into an Ntot-vector,
but where history sizes and types shares have been accounted for. To obtain dimensions
compatible with other vectors and matrices, we define ω := R0ω

F and:

ω̄ = R1ω
F . (170)

We define the following quantities (with history-size accounted for): λ̄ := S ◦ λ,
ψ̄ := S ◦ ψ̂, S ◦ λ̃ := Πλ̄, Π̄ := S ◦Π> ◦ (1Ntot ./S) (./ being the element-wise division).
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With these definitions, the definition of ψ and the planner’s FOCs (165) become:

ψ̄ = Dξu◦u′(x)ω̄ −DξE◦u′′(x)

(
I − (1 + r)Π>

)
λ̄− Sµ, (171)

1
χτ̃

(1/ϕ+ 1) l1/ϕ
(
yτ̃
)>
ψ̄ = µS>

(
l1/ϕ

χ
yτ̃ − FLy1+ τ̃

1/ϕ+1

)
, (172)

0 = ã>ψ̄ + (ξE ◦ u′(x))>(Π>λ̄), (173)
l1/ϕ+1

χτ̃

(
yτ̃ ◦

(
log y − 1

τ̃
1NF

))>
ψ̄ = µl

1/ϕ+ 1(S ◦ log y)>
(
l1/ϕ

χ
yτ̃−FLy

1/ϕ+1+τ̃
1/ϕ+1

)
, (174)

as well as the FOCs for savings for unconstrained and constrained histories: P (I − β(1 +
r)Π̄ψ̄) = 0 and (I−P )λ̄ = 0, respectively – where we denote by I the Ntot×Ntot-identity
matrix. Summing the two previous equations and using the definition (171) of ψ̄ yields:

λ̄ = M 2ω̄ + µV 1, (175)

where M 1 := P (I − β(1 + r)Π̄)DξE◦u′′(x)(I − (1 + r)Π>) + I − P , M 2 := M−1
1 P (I −

β(1 + r)Π̄)Dξ0◦u′(x), and V 1 := −M−1
1 P (I − β(1 + r)Π̄)S. With (171), we now get:

ψ̄ = M 3ω̄ + µV 2, (176)

where M 3 := Dξ0◦u′(x) −DξE◦u′′(x)(I − (1 + r)Π>)M 2 and V 2 := −DξE◦u′′(x)(I − (1 +
r)Π>V 1)− S. Substituting equation (176) into FOC (172), we obtain:

µ = L>0 ω̄, (177)

where C1 := S>( l1/ϕ
χ
yτ̃ − FLy

1+ τ̃
1/ϕ+1 ) − 1

χτ̃
(1/ϕ + 1)l1/ϕ(yτ̃ )>V 2 ∈ R and L>0 :=

1+1/ϕ
χτ̃

l1/ϕ(yτ̃ )>M 3/C1 is a Ntot-row vector. We can substitute µ using (177) into re-
lationships (175) and (176) to express ψ̄ and λ̄ as a function of ω only:

ψ̄ = M 4ω̄ and λ̄ = M 5ω̄, (178)

where M 4 := M 3 + V 2L
>
0 and M 5 := M 2 + V 1L

>
0 . We have expressed Lagrange

multipliers has a function of social weights and the two FOCs (173) and (174) are
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remaining will imply two constraints on ω̄. Using (178) with (173) and (174) yields:

0 = L>1 ω̄ = L>2 ω̄, (179)

where: L>1 :=
(
ã>M 4 + where: (ξE ◦ u′(x))>Π>M 5

)
,

L>2 := l1/ϕ+1

χτ̃
(yτ̃ ◦(log y− 1

τ̃
1Ntot))>M 4−

l(S◦log y)>
1/ϕ+ 1 ( l

1/ϕ

χ
yτ̃−FLy

1/ϕ+1+τ̃
1/ϕ+1 )L>0 .

A third constrain is the normalization of social weights to 1: 1Ntotω̄ = 1. With (170)
and (179), we obtain: M 6ω

F =
[

0 0 1
]>
, where M 6 =

[
L1 L2 1Ntot

]>
R1 is a

3×F -matrix. If F = 3,M 6 is a square matrix, which is generically invertible. We deduce:

ωF = M−1
6

[
0 0 1

]>
. (180)

H Accuracy of the simulation

We compare the simulation outcomes implied the refined truncation method and the
Reiter’s method, which is a benchmark simulation method in the literature. For the
truncation, we consider a uniform truncation length N = 2 and refined truncation lengths
of 10 for all productivity levels The two methods use perturbation techniques around the
same steady-state – which is the one of Section 5 implied by the calibration of Table 2.

In both methods, the fiscal instruments (τK , B, κ, τ) are assumed to follow simple
fiscal rules (the Reiter method does not allow one to solve Ramsey policies). After a
public spending shock, we assume that both capital tax (τK) and progressivity (τ) remain
constant, while the labor tax parameter κ (recall the labor tax increases with κ) adjusts
to stabilize public debt B, following a rule à la Bohn (1998): κt − κss = −cB(Bt −Bss),
where κss and Bss are the steady-state values of κ and B, and cB > 0 is set to cB = 0.1,
which ensures debt stability. We have also considered other fiscal rules to check that it
does not affect the comparison outcomes. Finally, we consider different persistences of
the public spending shock ρG. The simulation outcomes are plotted in Figures 6 and 7
for ρG = 0.95 and ρG = 0.1, where we report: public spending G, aggregate consumption
C, investment I (the three component of aggregate demand), public debt B (all four in
proportional deviation), and labor tax parameter κ (in level deviation).

We also report in Table 11, the mean and maximum absolute differences for these
variables between the two simulation methods. We only focus on the case ρG = 0.95,
which generates the largest differences.

Overall, we find that the truncation method provides a good approximation of the
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Figure 6: Simulation outcomes for ρG = 0.95. See text for details.

Figure 7: Simulation outcomes for ρG = 0.1. See text for details.

Consumption C Investment I Public debt B Labor tax par. κ

Mean abs. diff. 1.18 · 10−4 2.35 · 10−4 2.06 · 10−4 4.48 · 10−5

Max abs. diff. 2.76 · 10−4 7.64 · 10−4 4.91 · 10−4 1.07 · 10−4

Table 11: Mean and maximum absolute differences in simulations between the Reiter and
the truncation methods (ρG = 0.95).

model dynamics, which confirms the results of LeGrand and Ragot (2022a) and LeGrand
and Ragot (2022b) in different environments. The reason for this similarity is that the
within-history time-varying heterogeneity has a second order effect on the dynamics
compared to the between-history time-varying heterogeneity.

I Alternative Fiscal system

I.1 Model specification

We consider the same model as in Sections 2 and 4 but with a different fiscal system.
Instead of using HSV to model progressivity, we consider a combination of a linear labor
tax τLt and of a lump-sum transfer (as in Dyrda and Pedroni, 2022 among others). The
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post-tax wage (4) becomes: wt := (1− τLt )w̃t, while the individual budget constraint (8) is:

cfi,t + afi,t = (1 + rt)afi,t−1 + yfi,tl
f
i,twt + Tt. (181)

The agent’s program (7)–(9) is similar, but with equation (181) for the budget constraint.
The governmental budget constraint (3) becomes:

Gt + Tt + (1 + r̃t)Bt−1 ≤ τKt r̃t(Bt−1 +Kt−1) + τLt w̃tLt +Bt, (182)

where the labor supply is Lt = (χwt)ϕ
∑F
f=1m

f ∑
y∈Y Syy

ϕ+1. Equivalently to (6), we can
use the CRS property of the production function to express the governmental budget
constraint using post tax prices:

Gt + Tt + rtAt−1 + χϕwϕ+1
t

F∑
f=1

mf
∑
y∈Y

Syy
ϕ+1 = F (At−1 −Bt−1, Lt) +Bt −Bt−1, (183)

where At = ∑F
f=1 m

f
´
i
afi,t`(di) is the aggregate savings. The Ramsey program (50)–(55)

keeps the same structure but becomes with previous constraints:

max
(rt,wt,τt,Bt,Kt,Lt,(afi,t,cfi,t,lfi,t,νfi,t)i,f)t≥0

E0

 ∞∑
t=0

βt
F∑
f=1

ωfmf

ˆ
i

u(xfi,t)`(di)
 , (184)

subject to the governmental budget constraint (183), and for all f and i: the individual
budget constraints (181), the credit constraints (54) and the Euler equations (53) (the last
two constraints being unchanged).

I.2 Model Solution

The FOCs of the planner are computed with respect to public debt Bt, savings afi,t, interest
rate rt, wage wt, and transfer Tt. The FOCs wrt afi,t, Bt, and rt are similar to the ones in
the HSV case and correspond to equations (58), (59), and (61), respectively. The FOC
(61) wrt the labor tax parameter κt is replaced by the FOC wrt wt:

0 =
F∑
f=1

mf

ˆ
i

ψ̂fi,tl
f
i,ty

f
i,t`(di)− µtϕLt

(
1− FL,t

wt

)
, (185)
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where ψ̂fi,t is defined in (57). The FOC (63) wrt progressivity τt has no meaning in this
setup. The last FOC is the one wrt Tt:

0 =
F∑
f=1

mf

ˆ
j

ψ̂fi,t`(dj). (186)

We solve the model using the truncation method. We thus construct a matrix represen-
tation of the model as in Section G.3. Equations (166), (168), and (169) still hold, but the
budget constraint (167) becomes S◦x+S◦a = (1+r)Π> (S ◦ a)+χϕwϕ+1

1+ϕ S◦(y)ϕ+1+T1Ntot .
The constraint L>1 ω̄ = 0 of equation (179) is still valid, as well as the definition of L1.

Equations (175)–(178) and related vectors and matrices are also valid, but with τ̃ = 1 + ϕ

and l = (χw)ϕ. For instance, we now have: C1 := (w − FL)S>y1+ϕ − w
ϕ

(y1+ϕ)>V 2.
However, the constraint L>2 ω̄ = 0 in (179) does not hold anymore as it is related to the
progressivity τ̃ , which is not a planner’s instrument anymore. This constraint is replaced
by the one coming from the FOC on the transfer Tt, which implies: 1>Ntotψ̂ = 0, or using
(178), L̂>2 ω̄ = 0 with L̂>2 = 1>NtotM 4. With M̂ 6 =

[
L1 L̂2 1Ntot

]>
R1, the weight

expression (180) becomes:
ωF = M−1

6

[
0 0 1

]>
. (187)

I.3 Model Calibration

Regarding the fiscal policy, we target a lump-sum transfer equal to 8% of GDP, which is
consistent with Trabandt and Uhlig (2011). The linear labor tax is set to τL = 35.5% to
generate a public spending to GDP equal to 17%. The rest of the calibration (in particular
the income process and all preference and technology parameters) are identical to the one
of the baseline model in Table 2. The new elements of the calibration are in Table 12.

Parameter Description Value

Tax system

τK Capital tax 36%
τL Scaling of labor tax 0.75
T/Y Lump-sum transfers 8%
B/Y Public debt 64%
G/Y Public spending 17%

Table 12: Parameter values in the baseline calibration for the model with an affine tax
structure. See text for descriptions and targets.
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We solve the model using the refined truncation method with a uniform truncation
length of 2 and a refined length of 10 for all productivity levels, as in Section 5.2. The
dynamics of the fiscal system after a public spending shock with the same NPV but
different persistences is reported in Figure 8 – similar to Figure 1 in the main text. The
black solid lines correspond to persistence ρG = 0.1, and the blue dashed lines correspond
to persistence ρG = 0.99. The following variables are reported: public spending, G; value
of public resources, µ; level of labor tax, κ; progressivity of labor tax, τ ; capital tax, τ k;
and public debt, B.

Figure 8: Dynamics of selected variables for two public spending shocks with different
persistences and the same NPV in the model with an affine tax system. G—public
spending; µ—value of public resources; κ—level of labor tax; τ—progressivity of labor tax;
τ k—capital tax; B—public debt. The black solid lines correspond to persistence ρG = 0.1,
and the blue dashed lines correspond to persistence ρG = 0.99. G is in percent of GDP, B
is in proportional deviations, and other variables are in level deviations.

In Figure 8, we can observe that when the persistence is low (ρu = 0.1), the public
debt decreases on impact, while when the persistence is high (ρu = 0.99), the opposite
holds and the public debt decreases on impact. In the two cases, the labor tax barely
reacts and the small movement on impact – of the order of magnitude of −10−3% – quickly
vanishes. The capital tax steeply increases on impact by almost half a percent, which is
much larger than the labor tax reaction. Finally, the lump-sum transfer Tt increases on
impact, which makes the fiscal system more progressive. These results are all consistent
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Figure 9: Comparison of optimal public debt dynamics in the model with an affine tax
structure, for different persistences of the public spending shock (but the same NPV of
public spending), in proportional deviation from steady-state value of public debt.

with the outcomes of the baseline model. We can also observe that the responses of public
debt, capital tax and Lagrange multiplier of the governmental budget constraint, µ, are
quantitatively very close with both tax systems.

Finally, we plot in Figure 9 the dynamic of public debt for different persistences of
the public spending shock, while keeping the same NPV in all cases (as in Figure 3 of the
main text). As already observed in Figures 1 and 8, the public debt responses are overall
in the same ballpark for the two tax schemes. Furthermore, they are quantitatively very
similar for the two redistribution schemes for very low and very large persistences. For
interim values, the differences is slightly more marked and the transition from a positive
to a negative public debt response on impact occurs for slightly lower persistence values
when the tax system is affine than when it is progressive.

J Alternative SWF and period utility function sys-
tem

J.1 Model specification

In this specification, agents have a separable utility function U (c, l) = u(c)− v(l), and the
fiscal system is the same as in the baseline case (HSV labor tax). All agents are ex-ante
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identical: the labor process is common to all agents.
In this setup, as we have learned from Section 3, and consistently with Chien and Wen

(2023), that the Ramsey equilibrium does not exist when the planner is endowed with a
utilitarian SWF. To address this concern, we assume that the SWF attributes weights to
the period utility function that depend on the current productivity of the agent. Such
a weight is denoted by ω(yi,t). The utilitarian case corresponds to ω(y) = 1 for all y.
This specification is used in an intertemporal setting by LeGrand et al. (2022), Dávila
and Schaab (2022), and McKay and Wolf (2023) to deviate from the utilitarian case in
a tractable way. Formally, the SWF that corresponds to the planner’s aggregate welfare
criterion can be expressed as

W0 = E0

[ ∞∑
t=0

βt
ˆ
i

ω(yi,t)(u(ci,t)− v(li,t))`(di)
]
. (188)

Using the same notation as in Section 2, the budget constraint of agents is ai,t + ci,t =
Rtai,t−1 + wt(yi,tli,t)τt , while their FOCs with respect to consumption and labor can be
written as: u′(ci,t) = βEtRt+1u

′(ci,t+1) + νi,t and v′(li,t) = τtwtyi,t(yi,tli,t)τt−1u′(ci,t). We
deduce that the Ramsey program can be written as follows:

max
(rt,wt,Bt,Kt,Lt,(ai,t,ci,t,li,t,νi,t)i)t≥0

W0, (189)

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i

(yi,tli,t)τt`(di) = F (Kt−1, Lt) +Bt, (190)

for all i ∈ I: ai,t + ci,t = Rtai,t−1 + wt(yi,tli,t)τt , (191)

ai,t ≥ −ā, νi,t(ai,t + ā) = 0, νi,t ≥ 0, (192)

u′(ci,t) = βEtRt+1u
′(ci,t+1) + νi,t, (193)

v′(li,t) = τtwtyi,t(yi,tli,t)τt−1u′(ci,t), (194)

Kt +Bt =
ˆ
i

ai,t`(di), Lt =
ˆ
i

yi,tli,t`(di). (195)

J.2 Model Solution

The model resolution is similar to the one of the baseline model, despite some minor
differences. Because of the non-linear FOC (194) on the labor supply, we introduce a
Lagrange multiplier on this FOC that we denote by βtλl,i,t. We again introduce the
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quantities ψi,t and ψ̂i,t that we define as:

ψi,t := ωi,tu
′(ci,t)− (λi,t −Rtλi,t−1)u′′(ci,t) + τtwt

λl,i,t
li,t

(yi,tli,t)τtu′′(ci,t), (196)

ψ̂i,t := µt − ψi,t, (197)

which are the parallels in this setup of the quantities defined in (56) and (57) in the
baseline model, but which include the Lagrange multiplier on the labor supply FOC.

The FOCs of the Ramsey program (191) are computed with respect to public debt Bt,
savings ai,t, labor supply ai,t interest rate rt, wage wt, and transfer Tt. The FOCs wrt ai,t,
Bt, and rt are similar to the ones in the main text and correspond to equations (58), (59),
and (61), respectively. The FOCs (61) and (63) wrt the labor tax parameter κt and the
progressivity τt are modified because of the separable period utility function. The new
FOCs wrt wt and τt are:ˆ

j

(yj,tlj,t)τtψ̂j,t`(dj) = τt

ˆ
j

λl,j,t
lj,t

(yj,tlj,t)τtu′(cj,t)`(dj), (198)
ˆ
j

(yj,tlj,t)τtψ̂j,t`(dj) =
ˆ
j

λl,j,t
lj,t

(yj,tlj,t)τt (1 + τt log(yj,tlj,t))u′(cj,t)`(dj). (199)

The FOC with respect to the labor supply li,t is:

ωi,tv
′(li,t) + λl,i,v

′′(li,t) = τtwtyi,t(yi,tli,t)τt−1ψ̂i,t + µtFL,tyi,t (200)

+ λl,j,t
lj,t

τt(τt − 1)wt(yi,tli,t)τt−1u′(ci,t).

The model can be solved using the refined truncation method as explained in Section
5.2 for the baseline model and Section I.2 for the model with an affine tax structure. We
skip the details here for saving space.

J.3 Calibration

The period is a quarter. The utility function is separable in labor U(c, l) = u(c)− v(l),
with u(c) = c1−σ−1

1−σ and v(l) = 1
χ
l
1+ 1

φ

1+ 1
φ

. We set the inverse of IES to σ = 2, which is a
standard value in the literature. The discount factor is set to β = 0.99.

The productivity process, common to all agents, follows a standard AR(1) process:
log yt = ρy log yt−1 + εyt , where εyt

iid∼ N (0, σ2
y). The parameters are ρy = 0.993 and

σy = 0.082 to match the debt-to-GDP ratio with a relevant fiscal system. These parameters
are close to those from a direct estimation of the productivity process on PSID data, which
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corresponds to ρy = 0.9923 and σy = 0.0983 (see Boppart et al., 2018 and Krueger et al.,
2018). The productivity process is discretized into 7 states using the Rouwenhorst (1995)
procedure.

The rest of the calibration is unchanged compared to the baseline model (technology
parameters and fiscal system). Table 13 summarizes the model parameters that differ
from the baseline calibration of Table 2.

Parameter Description Value

Preference and technology

β Discount factor 0.99
σ Inverse of the IES 2

Productivity process

ρy Autocorrelation idio. income 0.993
σy Standard dev. idio. income 0.082

Table 13: Parameter values in the calibration of the model with an alternative SWF. All
other parameters are set to the same values as in the baseline calibration of Table 2.

We solve the model using the truncation method. We still use the inverse optimal
taxation approach to estimate the social weights of the SWF, but the application differs
because these are not ex-ante weights but weights on the period utility function depending
on the productivity level. Because the number of productivity levels (here 7) is typically
larger than the number of constraints imposed by the planner’s FOCs (here 2 as in the
baseline case), we cannot directly apply the same method as in Section 5.2. We follow
Heathcote and Tsujiyama (2021) and assume that productivity weights admit a parametric
representation that is quadratic in productivity levels. Formally, we assume that there
exists two real parameters denoted θ1 and θ2, such that for all productivity levels y:

logω(y) := θ1 log y + θ2 (log y)2 .

With this specification, the parameters θ1 and θ2 are exactly identified with the two
constraints from the Ramsey FOCs. Note that we do not impose any normalization
of weights, as it would imply the addition of a parameter θ0 (such that logω(y) :=
θ0 + θ1 log y+ θ2 (log y)2), which would have no impact on the simulations. Our calibration
implies θ1 = 0.93 and θ2 = 0.33. In an environment without savings, Heathcote and
Tsujiyama (2021) estimated the relationship logωy = θ log y and estimated θ = 0.517.
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The refined truncation length is set to N = 20, with a uniform truncation length of
2. Similarly to what we did for the baseline model in Appendix H, we check that the
results are not sensitive to this choice and that it provides an accurate representation of
the dynamics of the model.

J.4 Model Dynamics

Figure 10 plots the dynamics of the instrument for public spending shocks with two
different persistences. The dynamics are qualitatively similar to thosein the baseline case.
In particular, the public debt increases on impact for low persistence, while it decreases
for large one. The response of the capital tax on impact is also much more sizable than
the one of the labor tax. Finally, progressivity also increases. These three main results
are the same as in the quantitative exercise with the baseline model of Section 5.3. In
Figure 11, we plot the optimal debt dynamics for four values of the persistence of the
public spending shock, with a normalization of the initial shock G0 to generate the same
NPV of public spending.

Figure 10: Dynamics of selected variables for two public spending shocks with different
persistence but the same NPV. G—public spending; µ—value of public resources; κ—level
of labor tax; τ—progressivity of labor tax; τ k—capital tax; B—public debt. The black
solid lines correspond to persistence ρG = 0.7, and the blue dashed lines correspond to
persistence ρG = 0.97. G is in percent of GDP, B is in proportional deviations, and other
variables are in level deviations.
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Figure 11: Comparison of optimal public debt dynamics for different persistences of the
public spending shock (but the same NPV of public spending), in proportional deviation
from steady-state value of public debt.

K Simulations with Other Shocks

We now present the simulations of the model with the TFP and discount factor shocks
discussed in Section 5.4.3. We summarize the results using the same graph as in Figure
3, which shows the path of public debt for the different persistence values of the public
spending shock.

Figure 12 plots the paths of public debt for different persistence values of the TFP
shock. The initial value of the TFP shock is normalized so that the cumulative fall in
TFP is identical in all cases.

Similarly, Figure 12 plots the paths of public debt for different persistence values of the
discount factor shock. Again, the initial value of the shock is normalized for the average
value of the discount factor to be the same in all cases.
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Figure 12: Comparison of optimal public debt dynamics for different persistences of the
TFP (but the same average drop in TFP), in proportional deviation from steady-state
value of public debt.

Figure 13: Comparison of optimal public debt dynamics for different persistences of the
β-shock (but the same average value of the discount factor), in proportional deviation
from steady-state value of public debt.
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