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Annals of Economics and Statistics, Number 146, June 2022

REFINING THE TRUNCATION METHOD TO SOLVE HETEROGENEOUS-AGENT
MODELS

FRANÇOIS LE GRAND a AND XAVIER RAGOTb

We present a refinement of the uniform truncation method of LeGrand and Ragot
(2022) to solve heterogeneous-agent models with aggregate shocks. The method
consists in providing a finite state-space representation of such economies by trun-
cating idiosyncratic histories. The innovation compared to the uniform method is to
allow for truncated histories of different lengths. This offers a finer representation
when needed, while considerably reducing the model dimensionality. The method
reproduces the steady-state distribution of any heterogeneous-agent model and solves
for its dynamics in the presence of aggregate shocks. As with the uniform method,
the refined method can be solved using perturbation methods and hence implemented
with standard software, such as Dynare. We show that the refined truncation method
provides accurate results that improve on those of the uniform method.

JEL Codes: D31, D52, E21.
Keywords: Heterogeneous Agents, Truncation Method, Aggregate Shocks.

1. INTRODUCTION

Models with incomplete insurance markets for idiosyncratic risks are now a stan-
dard workhouse in quantitative macroeconomics. The application of these so-called
heterogeneous-agent models is not limited to macroeconomics, since it also covers house-
hold finance, corporate finance, and international finance, among other fields.

This paper presents a refinement of the uniform truncation method of LeGrand and
Ragot (2022) to solve these models in the presence of aggregate shocks. The uniform
truncation of LeGrand and Ragot (2022) assumes that the N last periods provide sufficient
statistics to capture the relevant heterogeneity (and not the whole idiosyncratic history).
This parameter N is called the truncation length. The method then aggregates in each
period all agents sharing the same history for the last N periods as if they were the same
agent. Since the method truncates histories at the same date, this results in so-called
uniform truncated histories. Compared to other computational solution methods, a first
interest of the truncation is to generate a finite state-space representation. This property
considerably eases the simulation of the model dynamics, as the simulations can rely on
standard packages, such as Dynare (Adjemian, Bastani, Juillard, Karamé, Maih, Mihoubi,
Perendia, Pfeifer, Ratto, and Villemot, 2011). As a consequence, introducing additional
frictions – that are sometimes called “bells-and-whistles” in the DSGE literature – is
straightforward. A second interest of the truncation method is to allow one to solve optimal

This paper has benefited from the comments of many participants in seminars where the truncation method
has been presented. We thank Pablo Winant and two anonymous referees for excellent suggestions on an
earlier version of this paper. We also thank Diego Sousa for outstanding research assistance. We acknowledge
financial support from the French National Research Agency (ANR-20-CE26-0018 IRMAC). Codes and
details about the algorithm can be found at https://github.com/RagotXavier/Truncation_Method_
Het.

aEmlyon business school and ETH Zurich. legrand@em-lyon.com
bSciences Po, CNRS and OFCE. xavier.ragot@sciencespo.fr
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

Ramsey programs in incomplete-market environments, which is of independent interest.1

However, the main drawback of the uniform truncation method is that the number of
truncated histories – and hence the model dimensionality – increases exponentially with the
truncation length. If there are k idiosyncratic states, the number of histories is proportional
to kN , which can be large. We present in this paper a new method, called the refined
truncation method, which differs from the uniform one by allowing for truncated histories
of various lengths. Instead of truncating all histories after N periods, the refined method
offers to truncate some histories after a longer length, which yields a finer and more
precise representation for these histories. This finer representation is obtained in spite of
a small number of truncated histories to track. Indeed, the number of truncated histories
increases linearly with the refinement length, instead of increasing exponentially with
the uniform length. The refined method has thus two main advantages compared to the
uniform one: a targeted finer representation for some histories and an overall small number
of histories. Furthermore, it preserves the benefits of the uniform method: finite state-space
representation and tool to solve Ramsey models.

We present the refined truncation method and its implementation in practice. We illustrate
its simplicity and accuracy through an example, in the spirit of Den Haan, Judd, and Juillard
(2010). We study a model where households facing idiosyncratic productivity risk have to
decide their consumption-saving trade-off. We compare the solution implied by the refined
and uniform truncation methods to those of standard alternative methods such as Reiter
(2009). The refined truncation method appears to be accurate, even when it involves only a
parsimonious finite state-space representation.

Numerical accuracy of the method is obtained thanks to a generalization of the aggrega-
tion procedure developed in LeGrand and Ragot (2022) for the uniform truncation method.
In the full-fledged incomplete-market model, there are different agents with the same
truncated history, but these agents generally have different complete histories (in particular
prior to the truncation date). Each truncated history thus features within-heterogeneity
that the truncation method accounts for using residual-heterogeneity parameters. With the
refined truncation, we can control the magnitude of this within-heterogeneity and extend
the truncation length for histories in which the within-heterogeneity is too large. The
combination of refinement with residual-heterogeneity parameters leads to a very accurate
dynamics for the truncated representation, even when the number of truncated histories
remains small. In our quantitative exercise, we show that a short uniform truncation length,
coupled with long refinement lengths (that thus keeps an overall small number of truncated
histories) provides accurate results that are comparable to those of other standard methods
(such as Reiter’s).

This paper belongs to the literature on solution techniques for heterogeneous-agent
models. After the seminal contributions of Krusell and Smith (1998) and Rios-Rull (2001),
different solutions have been proposed in the literature. Den Haan (2010) has presented
a comparison of these methods. Since then, the method of Reiter (2009) has become the
most popular technique to solve for heterogeneous-agent models in discrete times. This
method has been refined in posterior developments, in Ahn, Kaplan, Moll, Winberry, and
Wolf (2017), Winberry (2018), and Bayer, Luetticke, Pham-Dao, and Tjaden (2019) among

1See LeGrand, Martin-Baillon, and Ragot (2021) and LeGrand and Ragot (2022) for the application of the
uniform truncation method to solve for optimal policies in these environments. See also Bhandari, Evans,
Golosov, and Sargent (2021) for an alternative method in environments without binding credit constraints.
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François Le Grand and Xavier Ragot

others. Recently, Boppart, Krusell, and Mitman (2018) and Auclert, Bardóczy, Rognlie,
and Straub (2021) have presented new methods that are both based on the deterministic
non-linear simulations of the economy following small “MIT shocks” that are then used to
linearly approximate equilibrium solutions. These methods are known to be quantitatively
close to each other and to that of Reiter (2009). Some other methods use continuous-time
techniques to facilitate the resolution (see Kaplan, Moll, and Violante, 2018, or Nuño and
Moll, 2018, among others). Finally, the current paper provides a refinement on the initial
presentation of the truncation method in LeGrand and Ragot (2022). We offer a solution
to control for the magnitude of the heterogeneity within truncated histories, while their
number remains small.

The paper is organized as follows. Section 2 presents the environment. The truncation
method is presented in Section 3. A numerical example is provided in Section 4. Section 5
is the conclusion.

2. THE ENVIRONMENT

The objective of this paper is to present the truncation methodology in a simple setup, so
as to make the exposition of the method transparent. We rely on the same environment as
does Den Haan (2010), which is a simple heterogeneous-agent economy with aggregate
productivity risk. This will allow us to compare the truncation method with other simulation
techniques that are known to provide accurate results.2 The focus of the paper being the
quantitative implementation of the truncation method, we do not provide mathematical
convergence results (see LeGrand and Ragot, 2022 for a more technical presentation of a
similar setup).

We consider a one-good economy populated by a group of ex-ante identical agents. Time
is discrete and indexed by t = 0, 1, . . .

2.1. Risks

The economy is affected by two types of risk: an aggregate risk and an individual one.
The aggregate risk, denoted Zt, solely affects total factor productivity (TFP). It takes values
in a possibly continuous set. Finally, the aggregate risk is assumed to be Markovian. Its
precise dynamics will be specified when needed.

The other risk is the idiosyncratic risk. While each agent is assumed to provide an
inelastic labor supply normalized to 1, labor productivity is individual and stochastic. The
productivity risk is agent-specific, and we assume that agents cannot insure against it.
Asset markets are thus incomplete with respect to this productivity risk. The productivity
is denoted y and assumed to take value in a finite set Y , where the productivity levels are
assumed to be ordered. Higher values of y correspond to higher productivity levels. The
productivity process of a given agent follows a first-order Markov chain with constant
transition probabilities (Πyy′)y,y′∈Y , which are in particular assumed to be independent of
the aggregate risk. The probability that an agent currently endowed with productivity y
will have productivity y′ in the following period is equal to Πyy′ ∈ [0, 1]. Furthermore,
transition probabilities verify: Πyy′ ≥ 0 and

∑
y′∈YΠyy′ = 1, reflecting that probabilities

2It is interesting to note that since the comparison of Den Haan (2010), the literature has evolved to mostly
use the method of Reiter (2009) (with possible improvements) and the recent method of Boppart, Krusell,
and Mitman (2018) using the simulation of transitions.
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

must be nonnegative and that independently of the current productivity y, the agent will be
endowed with some productivity level y′ in the next period. Finally, an individual history
of productivity shocks up to date t is denoted by yt = {y0, . . . , yt} ∈ Y t+1.

2.2. Production

The production sector is standard. A representative profit-maximizing firm produces the
sole consumption good of the economy, by combining labor and capital. We consider a
Cobb-Douglas production function with constant returns-to-scale, a capital share α ∈ (0, 1),
and a capital depreciation rate δ ∈ (0, 1). Since the individual labor supply is fixed and
normalized to 1, the aggregate labor supply is constant and denoted by L > 0. The TFP Zt
is stochastic. Formally, the production at date t of Yt units of good is defined as:

(1) Yt = ZtK
α
t−1L

1−α − δKt−1,

where the capital Kt−1 is requested to be installed one period in advance. The firm rents
labor and capital at respective factor prices wt and rt. The profit maximization conditions
of the firm imply the following expression for factor prices:

wt = (1− α)ZtK
α
t−1L

−α
and rt = αZtK

α−1
t−1 L

1−α − δ.(2)

2.3. Agents’ preferences and program

The instantaneous utility function over consumption is denoted by u. As is standard,
u : R+ → R is assumed to be twice continuously differentiable, strictly increasing, and
strictly concave, with u′(0) =∞. Agents are expected-utility maximizers who maximize
the expected sum of discounted utility: E0

∑∞
t=0 β

tu(ct), where: 0 < β < 1 is a constant
discount factor, (ct)t≥0 a consumption path, and E0 an expectation operator over future
aggregate and individual shocks.

Agents can save in each period by trading capital shares that pay off the real interest rate
rt. Agents are furthermore prevented from short-selling capital shares and hence face a
possible borrowing constraint. The combination of market incompleteness with exogenous
borrowing limits is the usual market imperfection in the heterogeneous-agent literature
(Bewley, 1983; Imrohoroğlu, 1992; Huggett, 1993; Aiyagari, 1994). Given an initial
endowment a−1 and an initial productivity level y0, the agent chooses her consumption
path (ct)t≥0 and her saving plans (at)t≥0 so as to maximize her intertemporal utility, subject
to per-period budget constraints and borrowing limits. Formally, the agent’s program can
be written as:

max
(ct,at)t≥0

E0

∞∑
t=0

βtu(ct),(3)

ct + at = (1 + rt)at−1 + wtyt,(4)
at ≥ 0, a−1 given.(5)

The budget constraint (4) states that the agent finances consumption ct and savings pur-
chases at out of saving payoffs (1 + rt)at−1 and labor earnings wtyt – where we recall that
labor supply is normalized to 1. Equation (5) is the borrowing constraint.

Denoting by βtνt the Lagrange multiplier on the credit constraint, the agent’s Euler
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François Le Grand and Xavier Ragot

equation can be written as:

u′(ct) = βEt
[
(1 + rt+1)u

′(ct+1)

]
+ νt,(6)

where νt = 0 if the agent saves a positive amount, i.e., if at > 0.

2.4. Resource constraints and equilibrium definition

All agents are ex-ante identical but experience different productivity histories. This
means that agents are endowed with different streams of income and hence make different
choices for the trade-off between consumption and savings. So, though identical ex ante,
agents will be heterogeneous ex post. To distinguish between agents, we add a superscript
i to refer to an agent i in the population.3 In the initial period, agents are distributed along a
set I with measure `(·). Since the population of every agent i is `(di), the financial market
clearing condition can be written as:

�
i

ait`(di) = Kt,(7)

which formalizes that the sum of all individual savings is equal to aggregate capital.
Similarly, the equilibrium on the goods markets states that the sum of all individual
consumption plus the current capital should equal the production and past capital. Formally:

�
i

cit`(di) +Gt +Kt = Yt +Kt−1.(8)

Finally, the labor market clearing condition implies a relationship between aggregate
labor L and individual productivity levels:

�
i

yi`(di) = L,(9)

that can also be seen as a definition of L.
We can now state our market equilibrium definition.

DEFINITION 1 (Sequential equilibrium) A competitive equilibrium is a collection of
individual plans (cit, a

i
t)t≥0,i∈I , of aggregate quantities (Kt, Yt)t≥0, and of price processes

(wt, rt)t≥0, such that, for an initial wealth and productivity distribution (ai−1, y
i
0)i∈I , and

for initial values of capital stock verifying K−1 =
�
i
ai−1`(di), we have:

1. given prices, the functions (cit, a
i
t)t≥0,i∈I solve the agent’s optimization program in

equations (3)–(5);
2. financial and goods markets clear at all dates: for any t ≥ 0, equations (7) and (8)

hold;
3. factor prices (wt, rt)t≥0 are consistent with condition (2).

3To simplify the exposition, we discuss the recursive representation below.
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

2.5. The standard recursive approach

A difficulty with the equilibrium of Definition 1 is that it features an infinite number of
different agents’ consumption and saving levels. These agents indeed differ along their
productivity history, and therefore along savings and consumption choices. However, the
formulation of Definition 1 is unhelpful to tackle the computation of the equilibrium, as
the distribution `(·) offers very little structure and suggests that we should solve for all
individual programs and then iterate on prices until the financial market clears. Obviously,
given the dimensionality of the problem, this is not an achievable goal.

The standard approach in the literature since Imrohoroğlu (1992) and Huggett (1993)
consists in taking advantage of the recursive formulation. More precisely, the hetero-
geneity in productivity histories is summarized in two idiosyncratic state variables: the
beginning-of-period asset holding and the current productivity level. In other words, in-
stead of reasoning on sequences of productivity level realizations, the recursive method
focuses on this pair (beginning-of-period asset holding and current productivity level).
That the individual sequential program admits an equivalent recursive formulation in
an economy without aggregate shocks is proved in Huggett (1993) and generalized in
Açikgöz (2018). The recursive formulation lends itself to computing the equilibrium
quite easily without aggregate shocks (Z being constant). There are several methods to
compute the policy function (Endogenous Grid Method of Carrol, 2006, being one of
the most efficient ones, see https://julia.quantecon.org/dynamic_programming/
egm_policy_iter.html for lecture notes). Once policy functions have been calculated, a
stationary distribution can be computed either by simulating a population of N agents over
a given number of periods T (see Rios-Rull, 2001) or by using the policy rules to construct
a transition matrix over the distribution of wealth. The steady-state distribution is the fixed
point of this transition matrix (Young, 2010). This distribution can then be aggregated to
check whether the financial market clears or not. If the market does not clear, the interest
rate is updated and the procedure repeated until market clearing. When the market clears,
the equilibrium interest rate and asset distribution are known.4

The introduction of aggregate shocks greatly complexifies the resolution of
heterogeneous-agent models, since the distribution of wealth becomes time-varying. Semi-
nal contributions for approximating the model solution are Krusell and Smith (1998) and
Rios-Rull (2001), who relied on simulation techniques. Den Haan (2010) proposes a com-
parison of the different methods available at that date. Since this comparison, Reiter (2009)
has developed a method that is now widely adopted. More recently, Boppart, Krusell, and
Mitman (2018) and Auclert, Bardóczy, Rognlie, and Straub (2021) have developed similar
methods that yield results close to the method of Reiter. The truncation method will also
generate results close to those obtained with other solution techniques. Its interest relies on
its simplicity, allowing for new applications as the derivation of optimal policies mentioned
above.

4Several lecture notes provide a precise exposition of the resolution of the standard model. See
for instance https://alisdairmckay.com/Notes/HetAgents/ or https://notes.quantecon.org/
submission/5f5f811909e80c001bbd6eaf.
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3. THE TRUNCATION METHOD IN PRACTICE

The truncation method is based on an aggregation procedure in the history representation
(or sequential representation). We detail in this section how to use this method and compare
it numerically with other solution techniques in Section 4.

3.1. Constructing the truncated model

The truncation requires coming back to the sequential model formulation instead of
the recursive formulation. Its core idea is to group together agents who share the same
productivity history over the recent past and to express the model using these groups of
agents, which will act as history-specific representative agents. We present two methods
to group agents according to their recent productivity history: (i) the uniform truncation,
which involves an identical history length for all agents, and (ii) the refined truncation,
which allows one to consider histories of different lengths. The refined truncation model is
the specific contribution of this paper.

The uniform truncation.

In the uniform truncation, initially proposed in LeGrand and Ragot (2022), agents,
who share a common productivity of a given length, will be grouped together into so-
called truncated histories. Such agents will be called companions. This length, which is
identical for all agents, will be called the truncation length and is a method parameter.
For instance, if the truncation length is set at two periods, and if there are two produc-
tivity levels yH > yL, the truncated representation will feature four truncated histories:
{(yH , yH), (yL, yH), (yH , yL), (yL, yL)}. Each agent will then be assigned to one of these
four truncated histories, depending on her current and past productivity status. We will use
the convention that (yL, yH) corresponds to agents who currently have productivity yH and
had productivity yL in the previous period.

More generally, if we denote by N > 0 the truncation length, a truncated history will be
a vector yN = (y−N+1, . . . , y−1, y0), where y0 represents the current productivity status,
and y−N+1 the productivity N periods ago. The truncation method will then consist in
assigning agents with infinite history y∞ = (. . . , y−N−1, y−N , y−N+1, y−N+2, . . . , y−1, y0)
at date t to the truncated history yN , independently of productivity levels having occurred
more than N periods ago (such as the value of y−N−1 or y−N ). The infinite history of a
given agent is updated in every period, and the composition of truncated histories does
not remain fixed through time. For instance, if we assume that an agent with history
y∞ at t draws the productivity ỹ0 at date t + 1, her history at t + 1 will become: ỹ∞ =
(. . . , y−N−1, y−N , y−N+1, . . . , y−1, y0, ỹ0).5 The agent will thus be assigned at date t+ 1 to
truncated history ỹN = (y−N+2, . . . , y1, y0, ỹ0). With this construction, if ny = Card(Y)
denotes the number of productivity levels, there will be Ntot = nNy truncated histories of
length N .

It is noteworthy that, in each period, the uniform truncation that assigns an agent with
history y∞ to truncated history yN is well defined. Indeed, for any agent (more precisely
for any history y∞), there exists one, and exactly one, truncated history yN ∈ YN to which

5For the sake of simplicity, we will denote with a tilde future truncated histories, with a hat past ones, and
without decoration current ones.
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

the agent will be assigned. The fact that the uniform truncation assignment is well defined
makes the model representation with truncated histories (yN)yN∈YN feasible. In particular,
we can define the quantities ΠyN ỹN as follows:

(10) ΠyN ỹN = 1ỹN�yN Πy0ỹ0 ,

where Πy0ỹ0 is the (time-independent) probability to transit from productivity y0 to pro-
ductivity ỹ0, 1ỹN�yN = 1 if ỹN is a possible continuation of yN (i.e., if yN is a possible
past history for ỹN , formally: ỹ−1 = y0, ỹ−2 = y−1,. . ., ỹ−N+1 = y−1), and 0 otherwise.
The quantities ΠyN ỹN are positive and verify

∑
ỹN∈YN ΠyN ỹN = 1 for all yN . The matrix

(ΠyN ỹN )yN ,ỹN∈YN is thus a well-defined transition matrix for truncated histories – with
ΠyN ỹN being the transition probability from yN to ỹN . Truncated histories can thus be
thought of as a first-order Markov chain with the state space YN and the transition matrix
(ΠyN ỹN ).

The refined truncation.

The uniform truncation has the drawback that the number of truncated histories grows
exponentially with the length of the truncation. To avoid this exponential growth, this
paper proposes a refined truncation method that allows considering truncated histories
of unequal length. The intuition is to use longer lengths for some truncated histories
that are particularly large or heterogeneous. The constraint is twofold: (i) obtain a well-
defined mapping between agents (i.e., infinite histories) and these unequal-length trun-
cated histories, and (ii) obtain a well-defined transition probability matrix between trun-
cated histories. First, an arbitrary set of truncated histories of unequal lengths is un-
likely to yield a well-defined mapping. For instance, and to provide intuition, still in
the case of two productivity levels, the set {(yH , yH , yH), (yL, yH), (yH , yL), (yL, yL)}
is not able to assign agents whose terminal history is (yL, yH , yH). Oppositely, with
the set {(yL, yH , yH), (yH , yH), (yL, yH), (yH , yL), (yL, yL)}, the same agent with ter-
minal history (yL, yH , yH) can be assigned to two truncated histories. Second, even
in the case of a well-defined mapping, we need to check that the transition ma-
trix between truncated histories is also well-defined. Consider for example the set
{(yH , yH), (yH , yL, yH), (yL, yL, yH), {yL}}, which corresponds to a well-defined map-
ping. In that case, the transition matrix is not well-defined (the row associated to {yL} will
not sum to 1), reflecting that agents with truncated history {yL} getting the productivity
yH (and hence history {yL, yH}) cannot be assigned to any truncated history.

What we propose here is a construction of an unequal-length truncation that en-
ables us to obtain by construction a well-defined mapping. The starting point of
our construction is the observation that only particular truncated histories deserve
a longer length. Continuing the 2-state example, quantitative exercises typically in-
volve persistent states (and more precisely the state H being more persistent than the
state L). This means that when we focus on the set of uniform truncated histories
{(yH , yH), (yL, yH), (yH , yL), (yL, yL)}, a (sizably) larger share of agents will be assigned
to truncated histories (yH , yH) and (yL, yL). A similar observation holds for the uniform
truncation of length 3, where truncated histories (yH , yH , yH) and (yL, yL, yL) are also
the largest ones. The idea of the refined truncation is to use a longer length for these
larger histories. We can illustrate this based on the 2-period uniform truncation, where
we perform two refinement rounds. In the first refinement step, the history (yH , yH)
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will be refined into (yH , yH , yH) and (yL, yH , yH), simply by adding one extra past pe-
riod. This yields the set {(yH , yH , yH), (yL, yH , yH), (yL, yH), (yH , yL), (yL, yL)}, which
by construction corresponds to a well-defined truncation mapping and a well-defined
transition probability matrix.6 In the second step, the history (yH , yH , yH) can be refined
into (yH , yH , yH , yH) and (yL, yH , yH , yH). We then obtain the set of truncated histo-
ries {(yH , yH , yH , yH), (yL, yH , yH , yH), (yL, yH , yH), (yL, yH), (yH , yL), (yL, yL)}. Start-
ing from a common length of 2 periods and a set of 4 truncated histories, a 2-round
refinement leads to a longest history of 4 periods and a set of 6 truncated histories. A
similar refinement can be conducted for history (yL, yL).

We now provide a more formal construction of a set of refined truncated histories,
when there are two productivity levels. We denote a set of refined truncated histories
by R(N,NH , Nl), where N is the uniform truncation length (on which the refinement is
based), NH ≥ N is the longest refinement history for the state h, and NL ≥ N is the
longest refinement history for the state l. The recursion starts from the set R(N,N,N)
of uniform truncated histories that are all of length N . The first refinement step consists
in substituting for the history yNH = (yH , . . . , yH︸ ︷︷ ︸

N

) the histories yN+1
H and (yL, y

N
H ) =

(yL, yH , . . . , yH︸ ︷︷ ︸
N

). This yields the set R(N,N + 1, N) that contains 2N + 1 histories. Going

from R(N,N + 1, N) to R(N,N + 2, N) involves substituting yN+2
H and (yL, y

N+1
H ) for

yN+1
H . These steps can be repeated until we obtain R(N,NH , N). Overall, this refinement

has consisted to substitute for yNH the set {yNh
H } ∪ {(yL, ykH) : k = N, . . . , NH − 1},

while preserving by construction a well-defined mapping between infinite and truncated
histories, as well as a well-defined transition probability matrix. The longest history is of
length NH , and the set of refined histories includes 2N +NH −N histories: increasing the
maximal history length implies a linear increase in the number of truncated histories. The
construction of R(N,NH , NL) is analogous and involves refining the history yNL instead of
yNH .7 The number of truncated histories in the set R(N,NH , NL) is 2N +NH +NL − 2N .
A key implication is that it is possible in practice to combine a small value for N with
large values for NL and NH to obtain an accurate solution. The increase in the number of
histories is now linear instead of exponential.

Compared to the uniform truncation, the refined truncation enables us to target the
truncated histories that deserve a more precise representation, while preserving a small
total number of truncated histories. We will see in the quantitative section that the refined
truncation improves the precision of the uniform truncation. We will also explain in
this section how the lengths N , NH , and NL can be chosen – where NL can be chosen
independently of NH as long as NH , NL ≥ N .

6Extending an arbitrary truncated history (different from (yH , yH) or (yL, yL)) is un-
likely to yield a well-defined transition matrix. See for instance the above counter-example
{(yH , yH), (yH , yL, yH), (yL, yL, yH), {yL}} that corresponds to the refinement of history (yL, yH)
in the set {(yH , yH), (yL, yH), (yL, yH), {yL}}.

7Obviously, we can also similarly refine histories when the number of productive states is arbitrary (though
finite).
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

Similarly to equation (10), we can define for any two histories h and h̃ of R(N,NH , NL)
the quantity Πhh̃ as follows:

(11) Πhh̃ = 1h̃�hΠyh0 y
h̃
0
,

where yh0 is the current productivity for truncated history h, and as previously, Π
yh0 y

h̃
0

is

the (time-independent) probability to transit from productivity yh0 to productivity yh̃0 , and
1h̃�h = 1 if h̃ is a possible continuation of h, and 0 otherwise. Since histories h and h̃ can
be of unequal lengths, checking that h̃ is a possible continuation of h is more involved than
in the continuous case.8 Importantly, with our refined truncation, it can be checked that
the matrix (Πhh̃)h,h̃∈R(N,NH ,NL)

is a well-defined transition matrix for refined truncated
histories, with Πhh̃ being the transition probability from h to h̃.

Truncated history representation.

We now present the construction of the truncated model based on the truncated histories.
The construction is identical whether we consider a uniform or a refined truncation. We
consider as given a set of truncated histories constructed based on an arbitrary number of
productivity levels. The cardinal of R is denoted Ntot and its elements will be indexed hk,
with k = 1, . . . , Ntot.

Truncated histories can thus be thought of as representative agents, whose inside compo-
sition evolves through time – but this will be mostly hidden in model equations by the law
of large numbers. In particular, the size of a truncated history hk, denoted by Shk , can be
defined recursively as:

(12) Shk =
Ntot∑
k̂=1

Shk̂Πhk̂hk
,

which reflects that agents with truncated history h had truncated history ĥ in the previous
period with probability Πhk̂hk

.
We can also assign to each truncated history its own consumption level and its own

end-of-period savings, which will be denoted ct,hk and at,hk respectively. There is a link
between individual consumption and truncated history consumption, since the latter is
defined as the average of consumption levels of individuals whose infinite history maps
onto the truncated history under consideration. The beginning-of-period savings, denoted
ãt,hk , reflect the fact that these savings are actually savings at the end of the previous
period of agents having a possibly different truncated history. Similarly to the recursion
(12) for sizes, end- and beginning-of-period savings are connected through the following
relationship:

(13) ãt,hk =
1

Shk

Ntot∑
k̂=1

Shk̂Πhk̂hk
at−1,hk̂ .

8If we denote h = (yh−nh+1, . . . , y
h
−1, y

h
0 ) and h̃ = (yh̃−nh̃+1, . . . , y

h̃
−1, y

h̃
0 ), h̃ � h iff: (i) either nh̃ > nh

and yh̃−k = yh−k+1 for all k = 1, . . . , nh, (ii) or nh ≥ nh̃ and yh̃−k = yh−k+1 for all k = 1, . . . , nh̃ − 1. The
latter case supersedes the uniform case.
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We then deduce that the budget constraint at the truncated history level can be written as:

(14) ct,hk + at,hk = (1 + rt)ãt,hk + wty
hk
0 .

The interpretation is similar to the individual budget constraint (4), and the underlying
movement of individual agents between history is not visible once the expression of ãt,h is
understood.

The second equation characterizing the truncated-history economy is the Euler equation.
If we denote by Ct the set of credit-constrained truncated histories, we have:

∀hk ∈ R \ Ct, ξt,hku′(ct,hk) = βEt
[
(1 + rt+1)

Ntot∑
k̃=1

Πhkhk̃
ξt+1,hk̃

u′(ct+1,hk̃
)

]
,(15)

∀hk ∈ Ct, at,hk = 0,(16)

where the expectation is over aggregate shocks only – the expectation over future truncated
histories having been written explicitly. The parameters (ξt,h)h that appear in (15) can be
understood as residual heterogeneity parameters, which capture the fact that the truncated
history features within-heterogeneity. Indeed, although companions having the same
truncated history share by construction the same history over some periods, they differ
along their productivity levels in the distant past (prior to the length of the truncated
history). The truncated history therefore gathers partly heterogeneous individuals, and
this heterogeneity is taken care off in the Euler equation through the so-called ξs. Finally,
equation (16) reveals that truncated histories in Ct,N,Nh,Nl

are credit-constrained, and that
this corresponds to zero asset holdings.

Role of the ξs.

The ξs capture heterogeneity among companions. In the full model, the ξs are time-
varying, while in our method, they will be computed using the steady-state allocation and
will be kept constant in the presence of aggregate shocks. With this key assumption, the
model simulation simplifies into the simulation with a finite set of agents (i.e., the truncated
histories), and standard perturbation techniques can be used. Moreover, when heterogeneity
is small among companions of the same truncated history h, the corresponding ξh will be
close to 1. We explore below the quantitative cost of imposing ξ = 1 as an approximation
(instead of the steady-state values of ξ). This cost appears to be very small for well-chosen
truncations, as shown in Section 4.3.1.

To summarize, the truncated model is characterized by parameters (ξh)k, the probabilities
(Πhkhk̃

)kk̃ are derived from the initial transition matrix and equation (10), and the sizes
(Shk)k of (12) and allocations (ct,hk , at,hk , ãt,hk)hk are determined in equations (13)–(15).
Importantly, the number of unknowns and equations is finite (and equal to 5Ntot +N2

tot),
which offers a limited-heterogeneity model. The truncated model can be thought of as
a model with Ntot representative agents with different relative sizes and some within-
heterogeneity that is addressed by the ξs.

We now present the practical implementation of the truncation method to solve models
with aggregate shocks. The method relies on three steps. First, we explain how to select
the ξ parameters. In particular, we show how to derive these ξ-parameters from any given
steady-state distribution of wealth across histories (at,hk)k, for a given set R of truncated
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

histories. This initial distribution can be given by different sources, but it is more consistent
to derive it from a well-defined Bewley model. The second step is thus to derive this
initial distribution of wealth across histories from the aggregation of a full-fledged Bewley
model. Third, knowing the ξs, one can use simple perturbation techniques to compute
the dynamics with aggregate shocks, using packages like Dynare. The comparison of the
outcome of the truncation model with other solution techniques will be done in Section 4.

3.2. Implementation: From allocation to the determination of the ξs

We focus here on the steady state that corresponds to a fixed TFP: Zt = Z for some
Z > 0 at all dates. Steady-state variables are denoted without time subscript. We denote
by C the set of credit-constrained truncated histories. We consider as given a steady-state
distribution of end-of-period wealth, which we denote by ahk , 1 ≤ k ≤ Ntot. Our objective
is to obtain the corresponding ξhk , 1 ≤ k ≤ Ntot.

The first step is to use this distribution to determine the set of credit-constrained truncated
histories C. A truncated history will be assumed to be credit-constrained when end-of-
period saving is null: If ahk ' 0, then hk ∈ C. We deduce from equations (12)–(16) that
the steady-state economy is then characterized by the following set of equations:

ãhk =
1

Sk

Ntot∑
k′=1

Shk′Πhkhk′
ahk′ ,(17)

chk + ahk = (1 + r)ãhk + wyhk0 ,(18)

hk /∈ C, ξhku′(chk) = β(1 + r)
Ntot∑
k′=1

Πhkhk′
ξhk′u

′(chk′ ),(19)

hk ∈ C, ahk = 0.(20)

A very convenient way to express the truncated model allocation involves using matrix
notation. We introduce the following notations:
• S = (Shk)k=1,...,Ntot the Ntot-vector of sizes;
• Π = (Πhkhk′

)k,k′=1,...,Ntot the Ntot × Ntot matrix of transition probabilities across
histories;
• c = (chk)k=1,...,Ntot , a = (ahk)k=1,...,Ntot , ã = (ãhk)k=1,...,Ntot , the Ntot-vectors of

allocations (consumption, end-of-period and beginning-of-period savings);
• y0 = (yhk0 )k=1,...,Ntot the vector of current productivity levels across histories;
• ξ = (ξhk)k=1,...,Ntot the vector of residual-heterogeneity parameters;
• P = diag(pk)k=1,...,Ntot , with pk = 1 if hk /∈ C and pk = 0 if hk ∈ C, is a diagonal
Ntot ×Ntot-matrix;
• Du′(c)= diag(u′(chk)) the diagonal Ntot ×Ntot-matrix with u′(chk) on the diagonal

at rank k, and 0 elsewhere;
• I the identity matrix;
• 1Ntot the Ntot-vector of 1.
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We also introduce the following operations:

• � the term-by-term product of two vectors of the same size, which is another vector
of the same size: x� z = (xhk)� (zhk) = (xhkzhk);9

• × the usual matrix product: e.g., for a matrixM and a vector x (of length equal to
the number of columns ofM ),M × x is the vector (

∑
k′Mhkhk′

xhk′ )k.

To avoid heavy notations, we still denote without a sign the usual scalar multiplication
– that is assumed to apply to matrices and vectors (e.g., λM = (λMhkhk′

)k,k′=1,...,Ntot)
and with + the addition – that is extended to matrices and vectors of the same size (e.g.,
x+ z = (xk + zk)). We also keep the same notation for functions that apply element-wise
to vectors: f(x) = (f(xhk))k=1,...,Ntot .

We can rewrite equations characterizing the steady state of the truncated economy using
this notation and explain how to construct the vector ξ. We start with equation (12):

S = Π× S,(21)

which makes it clear that the vector of sizes, S, is the eigenvector of matrix Π associated
to the eigenvalue 1, where the sum of the eigenvector coordinates is normalized to 1.10 The
vector S is thus straightforward to compute.

Second, equation (17) for per capita beginning-of-period wealth ã, which yields:

(22) ã = (1/S)� (Π× (S � a)),

where 1/S = (1/Shk)k=1,...,Ntot is the vector of size inverses and a is the given vector of
end-of-period wealth. Note that if the size of the truncated history is Shk = 0, we can set
1/Shk = 0, which will be consistent such that a null-size history will get a null wealth.

Third, the budget constraint (18) becomes:

(23) c+ a = (1 + r)ã+ wy0,

which allows one to obtain consumption levels using the given vector a of end-of-period
wealth, and the vector of beginning-of-period wealth of equation (22).

The final step is to compute the residual heterogeneity parameters, ξ. We proceed in
two steps. First, as a normalization, we set to 1 the ξs in constrained histories: ξhk = 1 if
hk ∈ C. This can be written as:

(24) (I − P )ξ = (I − P )1Ntot .

To understand (24), observe that the matrix I −P is a diagonal matrix with a 1 coefficient
for constrained histories and a zero coefficient for constrained histories. In other words,
P is a projection matrix on the set of constrained histories. For a generic vector x, the
product (I − P )× x therefore selects the coordinates of x corresponding to constrained
histories (completed by zeros for unconstrained histories, such that the whole vector is of
length Ntot). This explains why equation (24) means ξhk = 1 if hk ∈ C. Second, the Euler

9This operation is also known as the Hadamard product.
10The existence of a positive eigenvector vector is guaranteed by the Perron-Frobenius theorem for the

positive matrix Π whose rows sum to 1.
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Refining the Truncation Method to Solve Heterogeneous-Agent Models

equation (19) for unconstrained histories can be written as:

(25) P ×Du′(c) × ξ = P × β(1 + r)Π×Du′(c) × ξ,

The intuition for equation (25) parallels the one for equation (24). Since P is a projection
matrix on the set of unconstrained histories, it means that the relationship (25) holds only for
unconstrained histories. Equation (25) can be written asP×(I−β(1+r)Π)×Du′(c)×ξ =
0.Adding it to (24), we obtain:

ξ =
(
P × (I − β(1 + r)Π)×Du′(c) + I − P

)−1
(I − P )1Ntot ,(26)

where it can be shown that the matrixP ×(I−β(1+r)Π)×Du′(c)+I−P is invertible.11

The determination of the vector ξ thus involves solving a linear system, which is fast in
our applications.

We summarize these results in the following Algorithm.

ALGORITHM 1 (Calibration of the ξs) Consider a given initial distribution a. The set of
credit-constrained histories C can be determined as:

C = {k = 1, . . . , Ntot : ahk = 0},

while the steady-state allocation and the residual heterogeneity parameters ξ can be found
through the following set of equations:

ã = (1/S)� (Π× (S � a)),

c = (1 + r)ã− a+ wy0,

ξ =
(
P × (I − β(1 + r)Π)×Du′(c) + I − P

)−1
(I − P )1Ntot .

Algorithm 1 allows one to easily find the vector ξ and the equilibrium allocation, which
corresponds to a given equilibrium wealth distribution a. Even though Algorithm 1 works
for any acceptable distribution a (such as the one coming from some empirical estimation),
we can derive further results on the convergence of this algorithm with the truncation
length N when the distribution a is derived from the aggregation of the steady-state wealth
distribution of a full-fledged Bewley model (LeGrand and Ragot, 2022). We now explain
how to obtain such a distribution.

3.3. Deriving the steady-state wealth distribution for a Bewley model

The initial wealth distribution a is the vector of end-of-period wealth for all truncated
histories h ∈ R. For each h, to obtain the component ah in a from a Bewley model, the
intuition is to apply the proper sequence of policy rules that is consistent with truncated
history h.

Let us proceed with a more formal description. The solution of a Bewley model is
characterized by a steady-state wealth distribution and a set of policy rules for savings. The

11The matrix I − β(1 + r)Π is always invertible. Indeed, the Gershgorin circle theorem implies that all
eigenvalues of Π are of modulus smaller than 1. Since β(1 + r) < 1 at the steady state (see Açikgöz, 2018,
for instance), the eigenvalues of β(1 + r)Π remain strictly below 1. It is then straightforward to deduce that
the columns of P × (I − β(1+ r)Π)×Du′(c) + I −P are independent and hence the matrix is invertible.
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steady-state wealth distribution is a mapping µ : (a, y) ∈ [0; +∞)× Y 7→ µ(a, y) ∈ R+,
such that µ(da, y) corresponds to the (steady-state) measure of agents having a wealth
lying in interval [a, a + da) and productivity level y. Similarly, saving policy rules are
mappings ga : (a, y) ∈ [0; +∞)× Y 7→ ga(a, y) ∈ R+, where ga(a, y) corresponds to the
end-of-period wealth for an agent having the beginning-of-period wealth a and the current
productivity level y.

To obtain the vector a of Algorithm 1, we need to compute the wealth distribution
µ̃ : (a, h) ∈ [0; +∞) × R 7→ µ̃(a, h) ∈ R+, where µ̃(da, h) is the measure of agents
with wealth in interval [a, a+ da) and truncated history h = (yh−nh+1, . . . , y

h
−1, y

h
0 ). Such a

measure can be computed by starting from the wealth distribution of agents in state yh−nh+1,
which is µ(·, yh−nh+1), and then applying successively the sequence of policy rules corre-
sponding to h = (yh−nh+1, . . . , y

h
−1, y

h
0 ). Applying first g(·, yh−nh+1) yields the end-of-period

wealth distribution of agents in state yh−nh+1. We then apply the policy rule g(·, yh−nh+2)
to obtain the end-of-period wealth distribution for agents with history (yh−nh+1, y

h
−nh+2).

Finally, we apply the remaining sequence of policy rules, g(·, yh−nh+3), . . . , g(·, yh0 ), which
ultimately yields the end-of-period wealth distribution of agents with truncated history
h. The computational implementation of this procedure amounts to multiplying an initial
distribution with nh different transition matrices, which is very fast.

On the theoretical side, the ξ-parameters constructed from the aggregation of a Bewley
model can be shown to converge toward 1 when the length of the uniform truncation
N increases (see LeGrand and Ragot, 2022). However, this asymptotic result is of little
practical use, since N remains small in practice. Fortunately, as we check in Section 4, the
ξ-parameters allow one to generate accurate results for short truncation lengths. As we
will see, the refined truncation further offers accuracy gains.

3.4. Solving the model with aggregate shocks

Once the steady-state allocation is found following Algorithm 1, the simulation of the
model in the presence of aggregate shocks is simple. Standard packages, such as Dynare,
can be used to solve the model using perturbation techniques. We provide the Algorithm 2,
but the simulation is direct.

ALGORITHM 2 (Simulating the model with aggregate shocks) We consider as given a
truncation length, N > 0 and a target steady-state wealth distribution, ass, and the TFP
is Zt = exp(zt) with:

(27) zt = ρzzt−1 + εt, where εt
iid∼ N (0, σ2

z).

1. We use Algorithm 1 to obtain the vector ξ and the set of credit-constrained histories
C that correspond to the steady-state wealth distribution ass. The elements ξ and C
are assumed to remain constant in the presence of aggregate shocks.
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2. The model in the presence of aggregate shocks is thus determined by equation (27)
and the following set of equations:

k = 1, . . . , Ntot : ãhk,t =
1

Shk

Ntot∑
k′=1

Shk′Πhk′hk
ahk′ ,t−1,(28)

chk,t + ahk,t = (1 + rt)ãhk,t + wty0,(29)

hk /∈ C : ξhku
′(chk,t) = βEt

[
(1 + rt+1)

Ntot∑
k′=1

Πhkhk′
ξhk′u

′(chk′ ,t+1)

]
,(30)

hk ∈ C, ahk,t = 0.(31)

3. The model in equations (27)–(31) can be simulated by perturbation methods around
the steady-state wealth distribution ass.

Algorithm 2 provides a straightforward path to simulate the model in the presence
of aggregate shocks. It is assumed that the log of the TFP follows a standard AR(1)
process (actually, the algorithm easily extends to a more complex dynamic). The core
of the simulation relies on off-the-shelf software, such as Dynare, which are already
popular in macroeconomics. The two main assumptions of Algorithm 2 are that: (i) the
ξs remain constant in the presence of aggregate shocks; (ii) the set-of credit-constrained
truncated histories is also unaffected by aggregate shocks. The second assumption is
not directly related to our method and comes from the fact that the model simulation
relies on a perturbation method that does not lend itself to time-variations in credit-
constrained truncated histories. The first assumption regarding the ξs means that the within-
heterogeneity remains constant over time and equal to its steady-state value. However, it is
noteworthy that this assumption does not mean the absence of within-heterogeneity.

From a practical aspect, the ξs and the set of credit-constrained histories are determined
using Algorithm 1. The model in equations (27)–(31), featuring constant ξs and a constant
set of credit-constrained histories can then be input in Dynare.

4. QUANTITATIVE EXERCISE

4.1. The calibration

Preferences.

The period is a quarter. The discount factor is set to β = 0.98 to obtain a realistic
capital-output ratio in our environment. The period utility function is log(c).

Technology and TFP shock.

In the production function of (1), the capital share is set to α = 36% and the depreciation
rate to δ = 2.5%, as in Krueger, Mitman, and Perri (2018) among others. The TFP process
is standard: Zt = exp(zt), with zt = ρzzt−1 + εzt , where εzt

iid∼ N (0, σ2
z). We use the

standard values ρz = 0.95 and σz = 0.31% to obtain a deviation of the TFP shock zt equal
to 1% at the quarterly frequency (see e.g., Den Haan, 2010).
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TABLE I
PARAMETER VALUES IN THE BASELINE CALIBRATION. SEE TEXT FOR DESCRIPTIONS AND TARGETS.

Parameter Description Value

β Discount factor 0.98
α Capital share 0.36
δ Depreciation rate 0.025

ρy Autocorrelation idio. income

{
0.99

0.97

σy Standard dev. idio. income 10.1%
ρz Autocorrelation TFP 0.95
σz Standard deviation TFP shock 0.31%

Idiosyncratic risk.

Idiosyncratic productivity risk is the key ingredient for the model to generate a realistic
earning and wealth distribution. We opt for an AR(1) productivity process: log yt =

ρy log yt−1 + εyt , with εyt
iid∼ N (0, σ2

y). We calibrate the parameters ρy and σy, such that the
persistence and variance of the labor income y match some estimated values.

To discuss the accuracy of the method, we consider two calibrations, with two values for
the persistence of the idiosyncratic risk. Indeed, this last parameter appears to be crucial to
calibrate the truncation, as discussed below.12

In the first calibration, we use a quarterly persistence of ρy = 0.99 and a quarterly
standard deviation of σy = 10.1%, which generate, for the log of earnings, an annual
persistence of 0.9617 and an annual standard deviation of 3.96%. This first calibration,
which is in line with Krueger, Mitman, and Perri (2018), generates a very high persistence
of the idiosyncratic risk. In the second calibration, we reduce the persistence of the
idiosyncratic risk to ρy = 0.97, keeping the standard deviation constant. This second
calibration is introduced to discuss the impact of some key parameters of the model on the
accuracy of the method.

In both cases, we use the Rouwenhorst (1995) procedure to discretize the productivity
process into 2 idiosyncratic states with a constant transition matrix, to be consistent with
the theoretical part. Table I provides a summary of the model parameters.

Table II provides the details of the two labor processes used in the paper.
The probability to switch from one state to another is 3 times lower, when the persistence

increases from 0.97 to 0.99.

4.2. Steady-state results

In the first calibration (ρy = 0.99), we find a steady-state capital-output ratio equal
to K/Y = 2.15, and the consumption-output ratio is C/Y = 0.79, which are standard
statistics in the US. In the second calibration (ρy = 0.97), the capital output ratio is
K/Y = 2.09 and the consumption-output ratio is unchanged at C/Y = 0.79.

12We considered various changes in parameters, such as the volatility of the idiosyncratic risk or the risk
aversion, without any significant changes in the results.
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TABLE II
PARAMETERS FOR THE LABOR PROCESS FOR THE TWO PERSISTENCES OF THE IDIOSYNCRATIC LABOR

PROCESS, DISCRETIZED USING THE ROUWENHORST PROCEDURE.

Parameter ρy = 0.97 ρy = 0.99

y [0.60, 1.39] [0.38, 1.62]

Π

[
0.985 0.015
0.015 0.985

] [
0.995 0.005
0.005 0.995

]

We now report the steady-state values of the parameters ξs for two truncation strategies
and for the two parameters in Table III. In the first calibration (ρy = 0.99), we consider
two truncation strategies. The first (entitled Uniform) corresponds to the general truncation
procedure, where all histories have the same length. This corresponds to the set of uniform
truncated histories R(N,N,N) for different truncation lengths N (see Section 3.1 for
the definition of R). In the second strategy, we consider a refined truncation, with the set
R(1, NH , NH), where all truncated histories have a common length of 1 (i.e., two states
only), and where the refinement length NH is identical for both states. To make the two
strategies comparable, we report them for a given total number of histories (Ntot). We then
report for different values of Ntot the standard deviation of the ξs (in percents) for each of
the persistence values and two truncation strategies. For instance, when the truncations
have only four histories, the standard deviation of ξ is 10.2% for the two strategies when
ρy = 0.99 and 7.3% when ρy = 0.97. When we consider 1024 histories, the standard
deviation in the case when ρy = 0.99 decreases to 3.3% for the refined truncation, but only
9.0% for the uniform truncation. When the persistence is ρy = 0.97, these two values are
4.1% and 6.5%, respectively.

We observe that the Uniform truncation is dominated by the Refined truncation in all
cases. Moreover, the standard deviation of the ξs decreases faster with the number of
histories Ntot for the refined strategy than for the uniform one. A final remark is that for
the refined strategy, the standard deviation does not decrease much beyond Ntot = 256.
Decreasing it further would require increasing the length of common histories (for instance
R(2, NH , NH)).

TABLE III
STANDARD DEVIATIONS OF THE ξs AS A FUNCTION OF THE NUMBER OF HISTORIES Ntot, FOR TWO

PERSISTENCE VALUES.

ρy = 0.99 ρy = 0.97

Ntot Refined Uniform Refined Uniform

4 10.2 10.2 7.3 7.3
8 9.9 10.0 7.1 7.2

16 9.3 9.9 6.7 7.1
32 8.2 9.7 6.0 7.0
64 6.4 9.6 4.9 6.9
128 4.1 9.5 4.1 6.8
256 3.3 9.3 4.1 6.7
512 3.3 9.2 4.1 6.6

1024 3.3 9.0 4.1 6.5
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4.3. Results in the presence of aggregate risk with ρy = 0.99

We now report model outcomes in the presence of aggregate risk when the idiosyncratic
risk persistence is ρy = 0.99. The case ρy = 0.97 provides very similar results and is
presented in Appendix A to save some space. We compare the outcomes of the refined
truncation method to those of the histogram representation and perturbation methods,
developed by Rios-Rull (2001), Reiter (2009), and Young (2010) among others, which we
call the Reiter method for brevity.13 The method is known to provide accurate results, when
compared to the global method of Krusell and Smith (1998), as shown in Boppart, Krusell,
and Mitman (2018) or in Auclert, Bardóczy, Rognlie, and Straub (2021). We also compare
these results to those of a complete market economy, labeled RA for Representative
Agent. This last economy is a simple RBC model, where the representative agent supplies
one unit of labor with the average productivity. This allows us to quantify the effect of
market incompleteness and heterogeneity on model outcomes. We compare the three cases
(truncation, Reiter and RA) along three dimensions: (i) Impulse Response Functions (IRFs),
(ii) Simulation paths of the economy, and (iii) Second-order moments.

Choice of the truncation lengths.

We consider a refined truncation method corresponding to truncated histories
R(1, NH , NL), with a one-length common history and a length NL and NH for the refined
histories in the low and the high productivity states, respectively. To choose NL and NH ,
we progressively increase the refinement length for each state to simulate the dynamics,
until the dynamics of the main variables barely change. As can be seen in Table III, the
standard deviation of the ξs reaches a plateau, but the dynamics of aggregate variables stop
being affected before the minimal standard deviation is reached. In Table IV, we report for
each of the two truncation persistences the chosen truncation, the total number of histories
Ntot, and the associated standard deviation of the ξs.

TABLE IV
CHOICE OF THE OPTIMAL TRUNCATION FOR TWO CALIBRATIONS.

Persistence ρy Set of truncated histories Ntot std(ξ)

ρy = 0.99 R(1, 5, 150) 155 3.46
ρy = 0.97 R(1, 5, 90) 95 4.32

First, the refined truncation features different lengths for the high and low states. For the
case ρy = 0.99, the chosen truncation corresponds to R(1, 5, 150), implying a maximal
history length of 5 for the low productivity state and a maximal history length of 150
for the high productivity state. The reason for this asymmetry is that low productivity
agents decumulate their assets rapidly, whereas high productivity agents accumulate their
assets progressively. As a consequence, the length of the history of high productive agents
needs to be high, while a relatively short history for the low productivity is sufficient to
capture the relevant heterogeneity. Thanks to the refinement procedure, the total number of
histories remains low and equal to Ntot = 155. The corresponding standard deviation of

13The perturbation of Reiter can be used with bases other than histograms, such as in Winberry (2018) or
Bayer, Luetticke, Pham-Dao, and Tjaden (2019).
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ξs is 3.46%, which is higher than the minimal value of Table III, but decreasing it further
has little impact on the economy dynamics.

When the persistence is ρy = 0.97, the chosen truncation is R(1, 5, 90). As the per-
sistence is lower, a shorter history length for high-productive agents is sufficient, as the
share of the population remaining in the high productivity state decreases faster than when
ρy = 0.99. The total number of histories is now 95, and the standard deviation of the ξs is
4.32.

We now show that these two truncations deliver very accurate results.

Impulse Response Functions.

IRFs for a selection of key variables are plotted in Figure 1. We focus on the following
aggregate variables: GDP (GDP ), per-capita aggregate consumption (C), capital (K), and
investment (I), as well as the real gross interest rate (R). We also plot the IRF for the
per-capita consumption of the bottom 10% in the wealth distribution (Cbot).

Figure 1: Comparisons of IRFs for the main variables after a technology shock of 1%. The black line is the
Reiter method. The blue dashed line is the truncation method.

We can draw several lessons from Figure 1. First, the truncation and the Reiter methods
yield very close outcomes for all variables of interest – even for those that are very volatile,
such as the capital stock, K. Second, the outcomes of the two methods in the incomplete-
market economy are sizably different from those of the RA economy. The difference
is particularly striking for the per-capita consumption of the bottom 10% in the wealth
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distribution, Cbot.14 While consumption in the RA economy is by construction the same as
the average consumption, the patterns for Cbot and C are very different in the incomplete-
market model (independently of the solution method). As a conclusion of Figure 1, the
assumption of constant ξs along the business cycle does not harm the outcomes of the
truncation method, and the time-varying within-history heterogeneity has a second-order
effect on the dynamics. This holds in spite of a sizable effect of heterogeneity, as can be
seen from the comparison with the RA economy.15

Simulation outcomes

Following the Boppart, Krusell, and Mitman (2018) comparison strategy, we plot in
Figure 2 the model outcomes corresponding to one simulation of the aggregate shock
history over 10,000 periods. The history of aggregate shock is reported in the top-left
panel of Figure 2. We also report the associated path for GDP, per-capita aggregate
consumption, capital, investment, and interest rate.16 In each of the panels of Figure 2,

Figure 2: Simulation of aggregate variables for different simulation methods.

14With the truncation method, Cbot is defined as the sum of consumption of truncated histories, which
approximately account for the bottom 10% of the consumption distribution.

15In a previous version, we also simulated the model with the uniform truncation method with a similar
number of histories. Results were very similar, except for the consumption of the bottom 10%, which was
less accurate with the uniform truncation.

16We don’t plot the outcomes for the RA economy, as levels are very different.
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the lines corresponding to the two solution methods are indistinguishable, as they are
superimposed. This confirms that the two solution methods thus generate very close model
outcomes. Table V provides the median and maximum absolute deviations between the
two simulations for the main variables.

TABLE V
COMPARISON OF SIMULATED VARIABLES FOR THE TWO COMPUTATIONAL TECHNIQUES.

Y C K

Median abs. dev. ( %) 0.01 0.01 0.04
Max. abs. dev. (%) 0.05 0.03 0.26

4.3.1. Second-order moments

The final element of comparison between the three solution methods is the second-order
moments of key aggregate variables, as well as the auto-correlations of consumption and
GDP. Each economy is simulated over 10,000 periods to compute those moments. The
results are reported in Table VI. The results confirm what was said for IRFs and simulation

TABLE VI
SECOND-ORDER MOMENTS FOR DIFFERENT COMPUTATIONAL TECHNIQUES.

Methods RA Reiter Ref.Trunc ξ = 1

GDP Mean 3.20 3.35 3.35 3.35
Std/mean (%) 1.36 1.33 1.32 1.32

C Mean 2.57 2.63 2.63 2.63
Std/mean (%) 1.12 1.08 1.08 1.08

K Mean 25.40 28.55 28.55 28.55
Std/mean (%) 1.38 1.30 1.28 1.28

corr(C,C−1) (%) 99.5 99.4 99.4 99.4
corr(GDP,GDP−1) 97.4 97.2 97.2 97.2

paths. The truncation and the Reiter methods generate very similar results, and only very
small differences in the second-order moments generated by the two methods can be
observed.

4.3.2. Are the ξs useful?

Using the refined truncation method, we set the ξs = 1 (instead of their computed value)
and simulate the economy. The result is reported in the last column of Table VI. We find
that the simulation outcomes are not quantitatively different when we set ξ = 1 when we
used the refined truncation method. The result is different from LeGrand and Ragot (2022),
who find the ξs are key for the accuracy of the uniform truncation method. The difference
in the results comes from the refined truncation. We indeed find that the standard deviation
of ξs is as small as 3.46%. As a consequence, setting ξ = 1 is a second-order change in
the results. We consider this result as an additional gain of the refined truncation.17

17We don’t plot the IRFs with ξs = 1 because they are indistinguishable from those of Figure 1 obtained
with the truncation method.
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From these experiments, we conclude that the refined truncation method generates very
accurate results, with a small number of histories to follow. We provide in Appendix A the
simulation results for the case ρy = 0.97, which confirms what we found for ρy = 0.99.

5. CONCLUSION

We have presented a refined truncation method to solve heterogeneous-agent models
with aggregate shocks. This method elaborates on the uniform truncation method of
LeGrand and Ragot (2022), which consists in providing a finite state-space representation
of heterogeneous-agent economies by truncating idiosyncratic histories. The core idea
involves considering finite-length (truncated) idiosyncratic histories instead of infinite ones.
The refinement consists in allowing for truncated histories of different lengths. This allows
one to better control the within-heterogeneity of finite-length histories, while keeping a
small total number of histories to follow. In the quantitative exercise, the refined method is
shown to yield an accurate representation of the model. As with the uniform truncation, the
implementation of its refinement can rely on perturbation methods and standard packages
(as Dynare). We propose examples in Julia, Matlab and Dynare as supplementary materials.

APPENDIX A: THE CASE ρY = 0.97

We report the simulation results for the case ρy = 0.97. All other parameters are the same as the ones of
Table I. We report IRFs, simulation paths, and second-order moments with the same variables as in the main
text (with ρy = 0.99). All conclusions are the same; the Reiter and the refined truncation methods are very
similar; and both differ from the RA economy.

TABLE VII
MOMENTS OF THE SIMULATED MODEL (ρy = 0.97) FOR THE TWO COMPUTATIONAL TECHNIQUES AND

THE REPRESENTATIVE AGENT ECONOMY.

Methods RA Reiter Trunc

Economies (1) (3) (4)

GDP Mean 3.20 3.35 3.35
Std/mean (%) 1.36 1.33 1.32

C Mean 2.57 2.63 2.63
Std/mean (%) 1.12 1.09 1.08

K Mean 25.40 28.55 28.55
Std/mean (%) 1.38 1.30 1.27

corr(C,C−1) (%) 99.5 99.4 99.4
corr(GDP,GDP−1) 97.4 97.2 97.2
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Figure 3: Comparisons of IRFs for the main variables after a technology shock of 1%. The black line is the
Reiter method. The blue dashed line is the truncation method.
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Figure 4: Simulation of aggregate variables for different simulation methods.
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